

SCHOOL OF MECHANICAL
ENGINEERING

MECH3890 – Individual Engineering Project

Design, Simulation and Evaluation of an Autonomous
Window Cleaning Robot

PRESENTED BY

If the project is industrially linked, tick this box
and provide details below
COMPANY NAME AND ADDRESS:

STUDENT DECLARATION (from the “LU Declaration of Academic Integrity”)

I am aware that the University defines plagiarism as presenting someone else’s work,
in whole or in part, as your own. Work means any intellectual output, and typically
includes text, data, images, sound or performance. I promise that in the attached
submission I have not presented anyone else’s work, in whole or in part, as my own
and I have not colluded with others in the preparation of this work. Where I have
taken advantage of the work of others, I have given full acknowledgement. I have not
resubmitted my own work or part thereof without specific written permission to do so
from the University staff concerned when any of this work has been or is being
submitted for marks or credits even if in a different module or for a different
qualification or completed prior to entry to the University. I have read and understood
the University’s published rules on plagiarism and also any more detailed rules
specified at School or module level. I know that if I commit plagiarism I can be
expelled from the University and that it is my responsibility to be aware of the
University’s regulations on plagiarism and their importance. I re-confirm my consent
to the University copying and distributing any or all of my work in any form and using
third parties (who may be based outside the EU/EEA) to monitor breaches of
regulations, to verify whether my work contains plagiarised material, and for quality
assurance purposes. I confirm that I have declared all mitigating circumstances that
may be relevant to the assessment of this piece of work and that I wish to have taken
into account. I am aware of the University’s policy on mitigation and the School’s
procedures for the submission of statements and evidence of mitigation. I am aware
of the penalties imposed for the late submission of coursework.

Signed date 26/04/2022

Alex Bury

REDACTED

MECH3890 – Individual Engineering Project Page ii

Abstract

Buildings require regular maintenance and inspection to ensure that they meet their

lifetime requirements, and this is traditionally done manually. However, with recent

advancements in robotics, it may be possible to autonomise the processes to reduce

costs. This purpose of this project was to design and evaluate an autonomous

window cleaning robot, and this report contains the procedures followed, design

specification, and critical evaluations of the final designs.

The quadcopter locomotion method was chosen due to its versatility, simplicity, and

availability of components, while an axial rotating drum brush with a ground-tethered

water feed was designed. The use of a ground-tethered power supply was also

investigated but was deemed impractical for this project. Consequently, the resulting

product has a flight time of around 17 minutes with 178Wh of onboard batteries.

In addition, a simulation environment in Unity was created, and a computer vision

(CV) program was developed in Python using OpenCV [1] to recognise and track

windows in the scene. While the filters used to recognise the windows were found to

be reasonably effective, the implemented midpoint tracking method failed to track

windows reliably. The CV programme was also tested on a pre-recorded video [2]

where similar results were observed, although performance was generally worse due

to the additional detail. A tree-based tracking algorithm is suggested to overcome

this issue alongside the issue of occlusion.

MECH3890 – Individual Engineering Project Page iii

Table of Contents

Abstract ii
Table of Contents iii
1. Introduction 1

1.1 Introduction 1

1.2 Aim 1

1.3 Objectives 2

1.4 Report Layout 2

2. Mechanical Design 3

2.1 Objectives 3

2.2 Concept Selection 3

2.2.1 Locomotion System 3

2.2.2 Cleaning System 4

2.3 Specification Outline 4

2.3.1 Dimensions 4

2.3.2 Mass 5

2.3.3 Normal Scrubbing Force 5

2.3.4 Propulsive Design 5

2.4 Final Design 7

2.4.1 Weight Analysis 7

2.4.2 Cleaning System 8

2.4.3 Cleaning Head Implementation 9

2.4.4 Transitions Between Operational Modes 9

3. Electrical System Design 10

3.1 Objectives 10

3.2 Environmental Sensing Methods 10

3.2.1 Wave-Detection-and-Ranging methods 10

3.2.2 Computer Vision 11

3.2.3 RGBD 11

3.2.4 Contact 11

3.2.5 GPS Localisation 12

3.2.6 Other Methods 12

3.2.7 Sensor Selection 12

3.3 Data Processing 13

MECH3890 – Individual Engineering Project Page iv

3.4 Final Design 14

3.4.1 Endurance Analysis 15

4. Computer Vision Implementation 17

4.1 Objectives 17

4.2 Approach 17

4.3 Simulation Environment 17

4.4 Final Implementation 18

4.5 Simulation Testing 21

4.5.1 Tracking & Occlusion 21

2.5.2 Thrust Vectoring 21

2.5.3 Performance 21

4.6 Real-World Testing 22

5. Conclusion 23

5.1 Achievements 23

5.2 Discussion 23

5.3 Conclusions 24

5.4 Future Work 25

6. References 25

Appendices 29

A.1 Supervisor Meeting Log 29

A.2 Gannt Chart 35

A.3 Computer Vision Programming Highlights 36

A.3.1 Window Class 36

A.3.2 Window Recognition Function 36

A.3.3 Window Tracking Function 37

A.3.4 Main Function 39

A.4 Equation Derivations 41

A.4.1 Cleaning Motor Torque Derivation 41

A.4.2 Inclination Angle Derivation 41

MECH3890 – Individual Engineering Project Page 1

1. Introduction

1.1 Introduction

In the modern world, materials such as glass, aluminium and concrete are widely

used in construction, particularly as cladding in large buildings. These materials are

exposed to the atmosphere and therefore are designed to be resistant to the

elements, however without proper maintenance they are likely to degrade. This

maintenance generally involves regular cleaning and inspection to ensure that debris

from pollution and other environmental factors does not promote degradation of

materials. Traditionally, this process has been very labour-intensive and therefore

expensive, but with recent advancements in technology, it may be more economical

to conduct the cleaning autonomously using a robot.

In addition, the applications of autonomous cleaning robots extend well beyond just

cleaning buildings, for example Aerones manufacture a commercial drone which is

used for inspection and maintenance of large wind turbines [3]. Other areas include

cleaning solar panels, where a small amount of dust or debris can reduce power

output by as much as 85% [4], and the cleaning of an aircraft’s exterior where dirt

can significantly increase drag and therefore fuel consumption [5].

The purpose of this project was to design and evaluate a cleaning robot, with a

primary focus of cleaning individual windows on buildings. This report documents

the design process for the mechanical, electrical and programming components of

such a robot, the challenges faced, and potential solutions for them.

1.2 Aim

To design, simulate and evaluate an automated robot to clean windows of

conventional buildings.

This includes selecting the locomotion system (quadcopter) and cleaning system

(axial rotating brush), designing the robot in CAD, creating a full bill of materials with

a complete cost and weight breakdown, setting up a simulation environment,

developing computer vision programming and critically evaluating its effectiveness.

MECH3890 – Individual Engineering Project Page 2

1.3 Objectives

Table 1.1 contains the objectives for this project, their deadlines and the work

required to meet them.

Table 1.1 – Project objectives, required work and deadlines.

 Objective Required Work Deadline

1 Create a high-level design
specification for the robot.

Evaluate existing cleaning and
autonomous robots, their
capabilities and limitations.

30/11/21

2 Design the mechanical aspects of
the robot including the propulsive
systems.

Research the design process,
create a design to meet the
requirements in CAD and source
components for the design.

11/01/22

3 Design the electrical aspects the
robot.

Evaluate the requirements,
research different sensing/actuation
methods and design their
implementation in CAD.

26/01/22

4 Create a simulation environment
for the drone.

Determine which platform and
languages to use, what libraries are
needed and create the
environment.

08/02/22

5 Create a computer vision
programme to map and track
windows in a scene.

Determine suitable libraries, study
computer vision operations and
design processes to recognise and
track windows.

18/03/22

6 Evaluate the mechanical,
electrical and programming
implementations.

Study the implementations and their
effectiveness, comparing them to
commercial solutions where
appropriate.

21/04/22

1.4 Report Layout

Sections 2 and 3 detail the mechanical and electrical design respectively, and a

complete bill of materials for both sections is presented at the end of section 3. In

each of these sections, the overall design requirements are considered and specific

requirements for each aspect of the robot are evaluated. From this, components are

selected and their implementation is demonstrated in labelled diagrams and renders.

Section 4 details the design process specifically for the window mapping computer

programme. Here, aims are considered and the implementation is presented as a

broken-down list of steps. Python code from the key parts of the computer

programme is presented in Appendix 5. In addition, the effectiveness of the

programme is evaluated using a pre-recorded video [2].

Section 5 concludes the report with a brief evaluation and discussion of the overall

design and highlights areas for future work.

MECH3890 – Individual Engineering Project Page 3

2. Mechanical Design

For a robot to function correctly, it’s mechanical elements must be efficient and

effective. This section details how the mechanical side of the design process was

carried out and includes details of the high-level concept selection process.

2.1 Objectives

A number of design requirements were determined based upon the overall aims of

the project. These specify that the vehicle must:

1. Be able to start, manoeuvre, and stop under its own power while outside in

mild weather conditions at altitudes of less than 2000m

2. Be attached to a ground unit via a tether at all times, through which water and

power are delivered, or alternatively be battery powered and have a run time

of 10 minutes or greater.

3. Be able to clean window panes of the most common sizes, orientations and

heights.

4. Be able to reach a window height of 10 metres while cleaning

5. Consist of readily available and affordable components, with an overall part &

material cost of less than £1000.

2.2 Concept Selection

2.2.1 Locomotion System

For the robot to clean windows & building cladding, which are often vertically

orientated, it must be able to navigate in a 3D environment in all directions at low

speed. Therefore the choice of locomotion system was limited to three options: rotary

wing, climbing, or hybrid UAV systems. Other systems like fixed-wing or rocket UAV

propulsion were ruled out because of their inherent high-speed and low-control

characteristics. Ground-based locomotion systems such as those presented by

Siegwart, Illah and Scaramuzza [6] are clearly inappropriate as they do not meet the

requirement of traversing vertical walls.

Climbing robots can offer the advantage of lower energy consumption, as they are

supported by the frictional force between themselves and the substrate/cable they

climb on, while rotary wing aircraft rely on momentum and pressure thrust generated

by the rotors which require continual energy input. However, climbing robots are far

less flexible than rotary wing UAV as they are limited by the nature of the substrate

material and the contours on it. Given this lack of flexibility, commercial climbing

window cleaning robots are almost always tethered to the building via a safety cable

to minimise the risk of the robots falling from the surface.

Tethered window cleaning robots such as the SkyScraper-I [7], Gekko Façade [8]

and Welbot Cleaner [9] require at least one fixing point at the top of the building to

MECH3890 – Individual Engineering Project Page 4

function. This means that the owner must undertake significant installation and

maintenance costs to use the product, and this may outweigh the benefit of

automating the process altogether, particularly in small buildings. In addition, a robot

that requires permanent infrastructure to operate will likely not be able to move

between sites and therefore will not be used for a significant proportion of it’s life. If

instead the robot could be taken between different sites, it could operate for a much

lower cost per m2 of window cleaned as economies of scale will apply.

Rotary wing aircraft are a compelling option for the locomotion system as they can

navigate in true 3D space and generally do not require specific infrastructure to

operate. Of these rotary wing aircraft, quadcopters are attractive because although

heavier than single rotor aircraft, they have relatively high operational stability,

excellent load capacities and are relatively compact [10]. In addition, quadcopters

generally rely on varying the rotor speed for movement and do not require complex

mechanisms like their single rotor counterparts [10]. Moreover, a large range of low-

cost quadcopter components are widely available. For these reasons, it was chosen

to use a quadcopter propulsion system for this robot.

2.2.2 Cleaning System

Commercial automated window cleaning systems generally involve a variation of a

rotating brush, although some rely on water high pressure water jets to remove dirt

[11]. In an investigation by Sangpradit, it was found that polythene material that had

been exposed to the elements and left to accumulate dirt was best cleaned by

soaking and mechanically scrubbing, while the waterjet failed to lift much of the dirt

[12]. For this reason, it was decided to implement a mechanical scrubbing brush with

a water feed. An axial brush arrangement was chosen over radial brushes because

the drone tilts to apply the normal force, and so a radial arrangement would require

a complex and heavy tilting mechanism. In addition, given the high mass of water

and its ability to prevent dust and take away particles from the cleaning site, it was

decided to use a water feed that is tethered to the ground.

2.3 Specification Outline

2.3.1 Dimensions

The cleaning head is the one of the main considerations when determining an

appropriate size for the quadcopter because of design target 3; the requirement to

be able to clean the most common sizes of windowpanes. Another primary

consideration is that the cost of the quadcopter is likely to increase exponentially

with increasing dimensions because a greater number of high-power motors, and

MECH3890 – Individual Engineering Project Page 5

therefore electronic speed controllers (ESCs), would be required. Consequently, the

dimensions of this prototype are likely to be smaller than an equivalent commercial

solution to minimise cost.

For the above reasons, it was decided that the quadcopter should use either 5 or 6

inch diameter propellers with a 250mm square frame, as 8 inch propellors would

drastically increase the overall size and weight while not offering a significant

performance advantage. This would enable a cleaning head of around 270mm in

length to be used, which is small enough to allow access to most windows.

2.3.2 Mass

A target mass of 3kg was selected by considering weights of similarly sized

commercial quadcopters, the propulsive force generated by commercially available

motor-rotor combinations, the weight of common LiPO batteries and the requirement

to carry a tethered water tube up to heights of 10m.

2.3.3 Normal Scrubbing Force

From common experience, the normal force applied between a scrubber and

substrate is closely linked to the rate of dirt removal; if you press harder while you

scrub, you increase the shear force between the two surfaces and dirt is likely to be

lifted faster. However, too much force may result in damage to the surface as the dirt

is pressed into the substrate, therefore the normal force should be carefully chosen.

From experience, humans vary the normal force automatically as we see areas that

have not been properly cleaned, and then return to these areas with more force.

To mimic the cleaning action of humans, a robot would require some form of closed-

loop control where the robot evaluates the cleanliness of the substrate before and

after cleaning, and then adjusts the parameters accordingly to maximise efficiency.

While this may be possible with more resources, it is an unrealistic expectation for

this project, and so a pre-determined normal force was used.

To determine this force, a hand was placed onto a vertical scale and a force was

applied as it would be when cleaning, and it was determined to approximately be the

equivalent of 1kg (9.81N). To achieve this, the quadcopter is required to tilt so that a

component of its thrust force acts towards the wall, and this is affected by its weight

and propulsive capabilities. Given that the maximum force of the propulsive system

needs to be around twice that of the quadcopter’s weight of 3kg [13, 14] (or 30N),

this force is realistically achievable.

2.3.4 Propulsive Design

To have the quadcopter powered via a tether cable is desirable because it enables

MECH3890 – Individual Engineering Project Page 6

continuous operation, therefore the electrical power requirement was evaluated.

Considering the quadcopter’s target mass of 3kg, and that the maximum thrust

generated should be at least twice the quadcopter’s weight reference [13, 14], each

rotor would need to generate a minimum of 1.5kg of thrust (14.7N). Table 2.3.1

contains a number of commercially available quadcopter motor and rotor

combinations that have been found to generate thrust in this region through static

tests. Out of all these quadcopter-rotor pairs, the Axis AF227 was found to have the

lowest peak power consumption at 760W, and therefore a quadcopter consisting of

four of these rotors would require a 3040W power supply.

Given that the maximum power limit of a standard mains UK outlet is 3000W (13A),

the quadcopter would likely have to be powered from an industrial outlet, which are

considerably less common than standard outlets. In addition, to transmit 3000W at

24V (125A) with 95% efficiency, using an online calculator [15] it was calculated that

a pair of cables with a cross section of 70mm2 would be required. Given that at least

10 metres of cable is needed to reach the desired height, the quadcopter would need

to carry at least 140cm3 of copper which would weigh 1.25kg assuming a density of

8.96g cm3 [16], not to mention the additional mass from insulation, connectors and

strain relief mechanisms.

Table 2.3.1 – A non-exhaustive list of commercially available motor and rotor pairs that

generate over 1500g of thrust.

Brand Size
Thrust

/g
Motor

Mass /g
Power

/W
Propellor

Total
Mass /g

Motor
Cost

Axis AF227 [17] 2207 1591 50 760 GF 51466 216.52 £21.90

Hobbywing Xrotor race pro
[18] [19]

2207 1890 32 953
Azure Power

5150 - 3
152.36 £19.50

Brotherhobby returner R4
[20] [21]

2206 1667 29 807 tj6045 132.8 £19.50

GepRC GR2207 [22] [23]
2207

.5
1738 32 733 HQ 6045 146.8 £16.98

T-Motor Velox V2 [24] 2306 1587 32 823 T5146 146 £12.45

iFlight XING-E [25] 2306 1642 33 893 6045 151.2 £9.68

Therefore, a power supply would most likely need to be fitted to the quadcopter to

enable the use of a lighter transmission cable in which power could be supplied at

much higher voltages to reduce resistive losses. However, it was determined that no

commercially available power supplies meet the weight and size requirements for

this application, hence a custom design would be required. Consequently, the

decision was made to abandon the idea of supplying power via a tethered cable as

the design of such a supply lies outside the scope of this project, and instead it was

chosen to power the quadcopter using a conventional LiPO battery for this prototype.

MECH3890 – Individual Engineering Project Page 7

In this case, given the relatively small cost of propellors, the iFlight XING-E 2306

1700Kv [25] motors were chosen because of their low price and relatively low

operating current which should mean they run cooler. In addition, they are relatively

lightweight and compatible ESCs and batteries are readily available.

2.4 Final Design

Figure 2.4.1 contains a

labelled render

diagram of the final

design. The principles

outlined by Pounds and

Mahony [35] for large

practical quadrotors

were followed

wherever possible to

ensure that the final

design is efficient and

effective. However, compromises were made in some areas, primarily due to the

relatively low-cost target and the availability of commercial-grade UAV components.

These include that many of the components are intended for hobby aircraft – the

motors for example are commonly used in point-of-view (POV) racing quadcopters

and are therefore not optimised for this practical application.

While this may restrict product development in future, it was deemed appropriate to

use hobby-grade components in this prototype as this project is only intended to

investigate the concept, not to design a marketable product.

2.4.1 Weight Analysis

The design weight of the robot plays a pivotal role in motor and rotor selection, which

is why it was one of the first parameters to be assigned. Throughout the design

process, it was closely monitored to ensure that the final product meets this target.

Figure 3.4 contains a complete list of all the components and their weights, and the

overall mass of the final robot was calculated to be 3.089kg.

While slightly over the target design mass, the quadcopter has met its requirements

since the motors are specified to each have 1.642kg [36] of thrust which means the

absolute maximum design mass of the quadcopter is 3.284kg [13, 14]. However,

given the non-linear relationship between mass and endurance [37], it is desirable

to minimise weight as much as possible.

Figure 2.4.1 – Labelled Render Diagram showing some of the

key design aspects of the robot. Some component CAD models

provided by [26, 27, 28, 29, 30, 31, 32, 33, 34]

MECH3890 – Individual Engineering Project Page 8

Further weight reduction may be achieved by optimising the chassis and cleaning

head and using more energy dense batteries, as these are the heaviest components

by a considerable margin.

2.4.2 Cleaning System

The direction of rotation

was an important

consideration in this

design, as if the frictional

force acts in the same

direction as the

quadcopter’s weight, the

motors would be required

to increase their power

output and as a result, the quadcopter would have a tendency to be ‘sucked’ into the

wall; whereas if the frictional force acts in the same direction as the thrust forces (as

shown in Figure 2.4.2), the quadcopter is likely to be more stable and will have a

lower power consumption.

Knowing this, and the fact that the quadcopter must clean windows moving

downwards due to the nature of gravity and its effect on the wastewater, it was

determined that the linear velocity of the brush must be at least twice that of the

quadcopter’s velocity while cleaning to ensure a good amount of shear force

between the surface and brush for dirt removal. Consequently, the minimum required

RPM of the brush was calculated using Equation 2.1, assuming that the quadcopter’s

cleaning velocity is 0.5ms-1.

 𝐵𝑅𝑃𝑀 =
𝑣𝑙

2𝜋𝑟
× 60 =

1

2𝜋 × 0.085
× 60 = 𝟏𝟏𝟐𝑹𝑷𝑴 (2.1)

In addition, a suitable motor and gear ratio were selected to ensure that the motor

has enough torque to rotate the brush at an acceptable velocity. To determine this,

a simple model was used that assumed the brush to be a homogenous rigid cylinder,

and that the coefficient of friction between the glass and the brush is 0.6. This value

is based upon an approximate average of the experimental findings of Holopainen

and Salonen from an investigation into the cleaning of metallic air ducts using

brushes [38]. Although the substrate material is different in this investigation, glass

windows are generally smooth, so the coefficient of friction is likely to be lower than

that of the air duct material. Equation 2.2 was used to calculate the required motor

torque, assuming a gear ratio of 1:1, and the derivation is presented in Appendix 4.1.

Figure 2.4.2 – Free Body Diagram of a Window Cleaning

Quadcopter

MECH3890 – Individual Engineering Project Page 9

 𝑇𝑀 = 𝜇𝑅𝑟𝐵𝐺𝑟 = 0.6 × 9.81 × 0.085 × 1 = 𝟎. 𝟓𝑵𝒎 (2.2)

From this evaluation, the Crouzet 82862006 [39] was chosen to be the drive motor

for the brush. Since this motor cannot be packaged easily into the cleaning head, it

was mounted in-board, and is connected to the cleaning brush via a 4mm wide timing

belt. This type of belt was chosen because it is the narrowest commonly available

timing belt and therefore minimises the gap between the bristles.

The inclination angle of the quadcopter while cleaning, 𝛼, was calculated using

Equation 2.3, assuming 1ms-2 acceleration downwards. The full derivation of this

equation is presented in Appendix 4.2.

𝛼 = tan−1 (
𝑅

(�̈�𝑚 + 𝑔𝑚 − 𝑅𝜇eq)
) = tan−1 (

9.81

(3 + 9.81 × 3 − 9.81 × 0.6)
) = 𝟐𝟎. 𝟑° (2.3)

2.4.3 Cleaning Head Implementation

Since the brush will be rotating at high speeds (greater

than 112RPM) and will be loaded in the axial and radial

directions, two ball bearings were selected. Here, both

bearings are of the doubly sealed variety to ensure that

the water from the cleaning operation does not wash out

the grease, and equally so that the grease does not

contaminate the working surface. However, the

squeegee mechanism will only rotate by small fractions

at very low speeds, therefore an unlubricated plain bearing was deemed suitable.

To ensure that the head is capable of cleaning along the entirety of its width, the

gaps for the supporting parts of the chassis and drive belt were minimised.

Consequently, a bearing housing was created that sits within a recess in the end of

the rollers which also acts as the pivot point for the squeegee blade. Figure 2.4.3

demonstrates this implementation.

2.4.4 Transitions Between Operational Modes

Once the quadcopter is positioned next to the window, the brush will begin to turn

and the quadcopter will gently touch the window, slowly increasing the inclination

angle up to the desired value. It is important that the brush begins turning before it

touches the window to prevent the larger static coefficient of friction from causing a

sudden jolt which could make the quadcopter crash, and to prevent high current

spikes from the brush’s drive motor when being started under load.

Figure 2.4.3 – Close up of

the bearing housing

(shown transparent for

clarity).

MECH3890 – Individual Engineering Project Page 10

3. Electrical System Design

The electrical systems of the robot were designed following the mechanical design as

the selection of various components, including the propulsive motors, took place in the

mechanical design phase. This section details the selection processes for components

and provides an evaluation of the final design.

3.1 Objectives

From the overall objectives of the project, a number of specific objectives were

defined for the autonomous system. These include that the quadcopter must:

1. Take-off and manoeuvre

2. Identify and track windows

3. Generate a response to approach and clean the windows

4. Land and disarm for the operator

3.2 Environmental Sensing Methods

For a robot to navigate autonomously in an environment, it must be able to conduct

simultaneous localisation and mapping (SLAM) [40, 41, 6], and to achieve this it

needs to sense the surrounding environment. This section details common

environmental sensing methods and discusses their issues in this specific application,

and ultimately describes which method is most appropriate and why.

3.2.1 Wave-Detection-and-Ranging methods

Radio detection and ranging (RADAR) was developed in the mid-20th century,

primarily for military use [42], and was designed to identify and locate enemy aircraft

and vessels in the battlefield [42]. Still used today, it is a contactless method for

taking distance measurements from the surrounding environment, and makes use

of a radio wave transmitter, radio detector and a precise clock to evaluate the time

of flight (time between sending the pulse and receiving the reflection), which is

proportional to the distance travelled [43].

Light imaging, detection and ranging (LIDAR) is similar, except it makes use of Light

Amplification by Stimulated Emission of Radiation (LASERs) and a light detector, in

place of the radio equivalents [44] [45]. Although lidar has applications extending

way beyond environmental sensing for robots, including measuring atmospheric

conditions [44] and mapping the surfaces of terrestrial bodies [45], it is often used as

one of the primary navigational sensing methods in robots [6] [41].

Sound navigation and ranging (SONAR) uses sound waves to achieve the same

result, and is often used in sub-marine environments [46] [41]. Ribas et. Al. discusses

MECH3890 – Individual Engineering Project Page 11

how sonar can be used for “simultaneous localisation and mapping” [41] in

underwater autonomous vehicles, despite their lesser reliability [41].

3.2.2 Computer Vision

A number of image processing libraries such as JavaVis [47], Khoros [48], OpenCV

[49], VIGRA [50] and CVIPtools [51] are available and enable patterns, colours,

contours and other visual characteristics from images to be recognised and

interpreted in real time. Although they may be computationally expensive [6], the

high-bandwidth nature of vision [6] means that it may be possible to rely solely on

computer vision for navigation.

One challenge with computer vision techniques is determining the distance from and

between objects in an image [6]. A number of different approaches to solving this

problem exist, including:

1. Calibration – a pre-determined pattern with known dimensions is placed in the

scene, and the computer vision algorithm recognises it and can relate from it the

surrounding environment [6].

2. Stereo imagery – multiple images are used, taken from two different cameras or

the same camera at different locations, and compared to determined depth [6].

3. Hybrid sensing – using another sensing method in combination with a camera and

combining the depth data before processing. RGBD is an example, which is

discussed in the next section.

3.2.3 RGBD

Red, Green, Blue and Depth (RGBD) sensors allow the mapping of a real 3D

environment by combining a coloured image with a depth plot [52, 53]. When

processed using more advanced computer vision programmes, a greater precision

can be achieved versus regular RGB cameras [47].

Many RGBD cameras use the structured-light method to determine depth at different

points in a scene [52] [54]. This method generally uses an IR projector and camera

in conjunction with a traditional RGB camera and combines the sensor data from

both systems into a single RGBD map [52].

KinectFusion, a tool which enables rapid mapping of an indoor space using a moving

Microsoft Kinect, was developed by Izadi et al. [55] and demonstrates that it is

possible to conduct real-time localisation and mapping using only an RGBD sensor.

3.2.4 Contact

While contact sensors may be of use in some circumstances, using it as the primary

MECH3890 – Individual Engineering Project Page 12

sensing method for navigation would likely prove inefficient and ineffective as when

a vehicle, particularly an airborne vehicle, collides with an obstacle, it is likely to crash

and suffer damage. Therefore the vehicle would be required to first survey the

environment very slowly while mapping it out, which would be a very time consuming

process. In fully autonomous robots such as iRobot’s Roomba [56], which primarily

relies on contact and close-range non-contact sensing methods for navigation [57],

this inefficiency is acceptable because the robot is designed to operate in one area

only such that no intervention is required between operations.

3.2.5 GPS Localisation

The Global Positioning System (GPS) was developed by the United States’

Department of Defence for their military operations and was later made available for

civilian use [58]. It makes use of an array of satellites which communicate time

information to ground based antennas, from which accurate localisation can be

determined [58].

3.2.6 Other Methods

Methods such as those which rely on magnetic fields, fluid pressure or light intensity

for example are unlikely to be of use for the main navigational systems because the

operational environment will change as the robot completes its window cleaning

task. However, these sensors may be of use in the other operational systems of the

robot, such as measuring the rotation speed of the cleaning brush using an optical

encoder or measuring the liquid flow rate using a flowmeter. A more exhaustive

range of robotic sensing methods are discussed by Hall [59].

3.2.7 Sensor Selection

While an RGBD sensor coupled with a computer-vision programme is an obvious

choice for many robots, the operational environment for a window cleaning

quadcopter must be considered. This environment is outdoors and requires

recognition of highly reflective and transmissive surfaces (windows).

Although lidar is used extensively in robots [6] [45], one of its main drawbacks is its

inability to consistently identify windows as most of the light passes through the glass

[60]. This poses a real challenge for this application and therefore it was deemed

inappropriate.

Given this window cleaning robot will be required to operate in urban areas close to

very large buildings, GPS localisation is likely to be severely inadequate as the urban

environment is likely to have an adverse effect on the GPS signal and may result in

miss-identification [61]. For this reason, GPS cannot be relied upon.

MECH3890 – Individual Engineering Project Page 13

For sensors that use the structured light technique to gather depth information [40],

such as the Intel Realsense D435 [54] and Microsoft’s Kinect [62], performance is

likely to be poor outside as the structured light projectors within the sensors are

unlikely to work reliably in brightly lit environments with reflective surfaces [63]. For

this reason, a sensor which uses stereo-camera system to gather depth information,

such as the Intel D455 [64], would be more appropriate. However, the monetary cost

and weight is likely to increase as additional processing power would be required.

An alternative technique which can achieve a similar result is the “structure from

motion” [6] approach which makes use of the robot’s ability to move. In this method,

multiple images are taken using one camera which are then compared to generate

an accurate depth map [6]. Although this method is computationally expensive [6], it

is likely to be more reliable than the structured light approach and cheaper than the

stereovision approach, and for these reasons it was chosen to be the primary

navigational method for the robot’s autonomous system.

One of the challenges of this method is the requirement to know the position of the

camera in the scene, however it may be possible to determine this if there is a known

reference dimension within the field of view, or if the precise kinematics of the drone

are measured, perhaps using an accelerometer.

An alternative approach, investigated by Majdik et Al., is to use Google street view

for localisation in urban environments [61]. While an interesting idea, it does not

provide the level of flexibility required to clean windows, as buildings almost always

have windows which are facing away from the street and therefore are not shown by

the google street view photos. However, this technique could be used in combination

with a structure-from-motion approach to improve localisation precision and

reliability.

Although the most suitable localisation method has been determined, this

investigation does not include a full practical implementation of this method, as a

decision was made to focus on the more unique window-cleaning specific aspects

of the project.

3.3 Data Processing

While CV-based sensing techniques are generally more processor intensive than

others [6], in recent years low cost and compact computers such as the Raspberry

Pi have become significantly more powerful. For this reason, and the fact that Pi’s

have proven effective CV platforms in other projects [65, 66, 67], it was decided to

use a Raspberry Pi 4 [68] as the main autonomous computer for the robot. In

MECH3890 – Individual Engineering Project Page 14

addition, it was decided to use a commercially available flight controller for the robot

as if the Pi was used instead, the drone would be vulnerable to crashing when the

processor is loaded by the CV programme. The PixHawk Mini running PX4 was

selected as it is a relatively low cost open-source product with a number of great

features and excellent community support [69].

 3.4 Final Design

Figure 3.4 contains a diagram of all the electrical systems and the connections

between different components.

Figure 3.4 – Diagram of the final electrical system, showing connections between devices

and the type of connection. Red lines show unregulated power supplied directly from the

batteries (~22.2V), yellow lines show regulated power supplied at 5V, and blue lines show

signal connections. Images taken from listing websites which are referenced in Table 3.1.

MECH3890 – Individual Engineering Project Page 15

3.4.1 Endurance Analysis

To evaluate the endurance of the quadcopter, the power consumption of devices

and the efficiency of the power supplies were considered while travelling at a

constant velocity and in cleaning mode, and these are presented in Table 3.1. The

power consumption of the propulsive motors was derived by linearly interpolating

between thrust and power values specified by the manufacturer [25] [36], the ESCs

were assumed to have an electrical efficiency of 0.8 based upon an approximate

average of the findings of Gong and Verstraete [70], the 5V voltage regulator was

assumed to have an electrical efficiency of 0.9 based upon its maximum efficiency

of 0.92 [71], and the wiring and connectors were assumed to have an electrical

efficiency of 0.98.

Given that the two 6S LIPO batteries have a capacity of 6000mAh at 22.2V, the

quadcopter has a total of 178Wh of battery capacity. From this, the flight time in

minutes was derived using Equation 3.1:

𝐹𝑙𝑖𝑔ℎ𝑡 𝑇𝑖𝑚𝑒 =
𝑇𝑜𝑡𝑎𝑙 𝑊ℎ 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑇𝑜𝑡𝑎𝑙 𝑃𝑜𝑤𝑒𝑟
× 60 =

178

617
× 60 = 𝟏𝟕. 𝟑 𝑴𝒊𝒏𝒖𝒕𝒆𝒔 (3.1)

Therefore, the quadcopter

exceeds the flight time

requirement of 10 minutes.

Given that the DJI Inspire 2, a

heavier quadcopter with a

smaller battery, has an average

power of 436W and a flight time

of 27 minutes [72], the power

consumption of this quadcopter

is greater than expected.

However, the data for these

motors was provided by the manufacturer and is assumed to be reliable, therefore it

may be suggested that the efficiency of the selected motors is significantly less than

those used on the Inspire 2. This would benefit from a practical investigation where

to determine the true power consumption of the motors and efficiency of the ESCs.

Figure 3.5 shows how flight time varies for as mass increases for this specific

powertrain. Power data was extrapolated from the motors’ specification sheet [36].

If the mass is decreased by 16% (500g), the endurance of the robot would be

extended by 74%, thus showing the importance of minimising weight.

Figure 3.5 – Plot of flight time against quadcopter

mass for this powertrain.

0

10

20

30

40

50

60

2000 3000 4000 5000

Fl
ig

h
t

Ti
m

e
/M

in
u

te
s

Quadcopter Mass/ grams

MECH3890 – Individual Engineering Project Page 16

Table 3.1 – A complete bill of materials, considering the masses and power draws of all the
components. * Power draw based upon an estimate of electrical efficiency.

Type Name QTY
Total Avg.

Power
Draw/ W

Total
Mass /

g

Cost
(each)

Cost (total)
E

le
c
tr

ic
a

l
C

o
m

p
o

n
e
n
ts

Battery
Turnigy 4000mAh 6S
60C [73]

2 - 1364 £52.07 £104.14

Motors
iFlight XING-E 2306
1700kV [36]

4 856.0 132 £11.38 £45.52

Flight
Controller

Pixhawk Mini [74]
[75]

1 2.5 12 £51.13 £51.13

Navigation
Computer

Raspberry Pi [68] 1 6.0 46 £34.00 £34.00

ESCs
Turnigy MultiStar
BLheli_32 ARM 51A
[76]

4 171.2* 69 £16.07 £64.28

PI PSU
Voltage Regulator
[71]

1 1.2* 20 £1.99 £1.99

Cleaning Brush Motor Relay [77] 1 0.5 (est) 18 £7.09 £7.09

Cleaning
Head
Motor

Crouzet 82862006
[78]

1 3.9 160 £111.29 £111.29

Squeegee
servo

TowerPro SG92R
[79]

1 3.3 9 £4.00 £4.00

Camera Logitech C270 [80] 1 2.5 75 £25.99 £25.99

Wiring &
Connectors

Estimate 1 20.9*
100
(est)

£10.00 £10.00

M
e

c
h
a

n
ic

a
l
C

o
m

p
o

n
e
n
ts

Propellors HQ Prop 6045 [81] 4 - 20 £0.26 £1.03

Cleaning
Head

Custom 3D printed
with brush bristles

1 -
400
(est)

£5.00 £5.00

Drive Pully
Optibelt 32T Timing
Belt Pully [82]

1 - 20 £8.11 £8.11

Drive Belt
Optibelt 4 T2,5 / 420
[83]

1 - 10 (est) £9.96 £9.96

Brush
Bearings

604_2RS [84] 2 - 4 £2.39 £4.78

Fixings &
Fasteners

Overall Assumed 1 - 50 (est) £5.00 £5.00

Elbow Pipe
Fitting

4mm Tefen Elbow
[85]

2 - 4 (est) £1.25 £2.50

Tee Pipe
Fitting

4mm Tefen Tee [86] 3 - 6 (est) £1.25 £3.75

Pipe
4mm ID x 15M Pipe
[87]

1 -
100
(est)

£4.25 £4.25

Water in 12M of pipe 1 - 150 £0.00 £0.00

Chassis -
Material

2mm Carbon Fibre
Sheet 950X500 [88]

1 - 300 £153.30 £153.30

Chassis -
Adhesive

VM100 [89] 1 - 20 (est) £5.70 £5.70

Totals 1068 W 3090 g £662.81

MECH3890 – Individual Engineering Project Page 17

4. Computer Vision Implementation

While localisation is not unique to this application and is a problem faced by many

autonomous robots, the window mapping process is novel. Therefore, the decision

was made to focus on the mapping processes, and the development and final

implementation of these are discussed in this section.

4.1 Objectives

The second and third objectives listed in section 3.1 specify that the quadcopter’s

autonomous system must be able to ‘Identify & Track Windows' and 'Generate a

response to approach and clean the windows’. These objectives rely on the

programming of the computer-vision system, and therefore this system is designed

to these requirements.

4.2 Approach

As discussed in section 3.2, a number of computer vision libraries exist. OpenCV

was chosen because it is a mature, open-source library that has backing from a

number of large organisations like Intel, Google and Microsoft [90], and the fact that

there are many resources regarding its implementation and use [91] [92].

Python was chosen as the development platform for the computer vision

programming because it is highly portable, supported on many different platforms

and is highly object-orientated meaning it has excellent scalability [93]. In addition,

the OpenCV library is commonly used via its python implementation [94], meaning

there are many community resources available.

4.3 Simulation Environment

The 3D graphics engine Unity was

used to simulate the physical

environment for the quadcopter,

and the camera output from this

environment was streamed to the

python programming via Windows

DirectShow. This is the same way

that a webcam is streamed to

different programs on a Windows

computer and therefore can be substituted for one. This video stream is the only

data passed to the python programming from the simulation environment, which is

analogous to a real implementation. Assets from a New York themed pack [95] were

used to create the scene.

Figure 4.1 – Data flow between the simulation

environment and the autonomous control

programming.

MECH3890 – Individual Engineering Project Page 18

To imitate the transmission of thrust vectors from the Raspberry Pi to the PixHawk

flight controller, Transmission Control Protocol (TCP) was used. Here, a TCP server

was configured in the C# programming, and a TCP client was configured in Python.

TCP was chosen as it is a connection-orientated and robust method of

communication [96] that has readily available libraries which make setting up the

server and client relatively straightforward [97] [98].

Figure 4.1 demonstrates the flow of data between the simulated environment and

the autonomous system programming

4.4 Final Implementation

The final implementation uses Python 3.3.7 [99], running in real time via PyCharm

Community 2020.1.4’s built in interpreter [98]. Table 4.1 lists the libraries used in

both the Python and C# programming and what they have been used for.

Table 4.1 – Libraries used in both the C# and Python Programming.

 Library Name Version Description

C
#

SimpleTCP [97] 1.0.24

Allows quick and easy initialisation and

management of a TCP server, used for

thrust commands from the Python controller.

System.Collections Inbuilt in Unity

2020.3.27f1

[100]

Allows use of coroutines and other functions.

UnityEngine Required for scripts to work with Unity.

P
y
th

o
n

opencv-contrib-

python [94] [1]
3.4.17.61

The OpenCV library for python with

additional modules.

numpy [101] 1.21.5
Allows manipulation of data created using

the opencv-python library.

keyboard [102] 0.13.5 Enables keyboard input to be used.

socket

Inbuilt in

PyCharm

2020.1.4

[103]

Used for to setup a TCP client and send

thrust data to the server running in Unity.

csv
Used for reading and writing the settings on

each launch and close of the programme.

exists (from os.path)
Used to check that settings file exists before

opening.

time
Used to manage timeouts on window objects

(during object tracking).

A video demonstration of the final implementation is available online at:

https://www.youtube.com/watch?v=9L-0Ks-nzPc

https://www.youtube.com/watch?v=9L-0Ks-nzPc

MECH3890 – Individual Engineering Project Page 19

The functional aspects of the

computer vision programme

are split into six distinct stages:

1. Frame Acquisition: The

stream is created using the

UnityCapture library [104],

and is opened using the

OpenCV library in Python

[94]

2. Frame processing: Each

frame is taken individually

and the following steps are carried out on them to prepare and simplify the image

ready for window detection:

a. Cropping (numpy function)– Unwanted areas are removed from the

image. This is done first to save on processing power.

b. Dilating (OpenCV Function) – A morphological filter is used with a square

kernel, the size of which is defined by the user, to remove any small

border regions in the image (e.g. window frames). The number of

iterations is also defined by the user.

c. Eroding (OpenCV Function)– A second morphological filter with the same

size of kernel and number of iterations is used to counter-act some of the

enlargement effects of the dilating operation.

d. Greyscale Conversion (OpenCV Function) – The image is converted into

greyscale. This step is carried out after dilation and erosion to ensure

boundaries between different colours of similar brightness are not lost.

3. Window Recognition: The following steps are carried out to find the windows in

each frame:

a. Canny Edge Detection (OpenCV Function) – Finds all the edges of an

image based on Canny’s algorithm [105, 106]. Upper and lower threshold

values are defined by the user.

b. Contour Detection (OpenCV Function) – Finds all the closed contours in

the binary edge-detected image. This effectively filters out all the open

contours.

c. Vertex Detection (OpenCV Function) – Approximately locates all the

vertices of the closed contours using the Douglas-Peucker algorithm

[107].

d. Vertex Filter – Uses the fact that most buildings have rectangularly-

Figure 4.2 – The output window showing the real time

images at various stages in the computer vision

process. The top right output shows the initial image

overlayed with the final window tracking and force

vectoring line.

MECH3890 – Individual Engineering Project Page 20

shaped windows to filter any shapes that do not have four vertices.

e. Dimension Filters – Minimum and maximum window sizes can also be

defined by the user to prevent the programme from assuming any very

large or very small objects are windows.

4. Window Tracking: Tracked window objects are stored in a custom window class

which are identified by unique ID numbers, and these numbers are overlayed on

the output to show how the programme recognises that windows are unique and

where it fails to track them. The following processes are carried out for each

frame, noting that a list of tracked window objects is stored between frames:

a. Firstly, the last update time of each of the tracked windows is checked,

and any windows that have exceeded the timeout are discarded. This

saves memory and processing power, and prevents old windows from re-

appearing.

b. Then the midpoints of all the recognised windows in the current frame are

calculated and are each compared the last known location of all the

tracked windows. If the difference in midpoints is less than a threshold

value, and the tracked window hasn’t already been assigned, the window

in the current frame is assumed to be the same as the tracked window. If

the tracked window has already been assigned, the next closest window

is evaluated.

c. If there are no tracked windows within the threshold distance, it is

assumed that the window has appeared in this frame, and a new tracked

window object is created.

5. Thrust Vectoring: When in auto mode, the programme calculates the difference

between the centre of the image and the position of the window with the lowest

ID number, and applies a translational thrust vector with the aim of centring the

window on the frame. Once the centre of the window lies within 10 pixels of the

centre of the frame, the programme will apply thrust such that the quadcopter

approaches the window whilst maintaining its central position. When the

quadcopter is so close that the window is too large to be recognised with the

current settings, the thrust vectoring is stopped. At this stage, a further cleaning

algorithm would need to be implemented. A line is drawn on the output window

to show the direction of the vector and this turns red when in auto mode.

6. Data Output & User Interface: A control panel and video output window are

presented to the user, on which the detected windows are highlighted and

numbered in real time. This allows the user to fine-tune the settings for the

specific site which are saved in a CSV file between executions of the programme.

MECH3890 – Individual Engineering Project Page 21

Figure 4.2 contains a capture of the output window.

4.5 Simulation Testing

4.5.1 Tracking & Occlusion

While at low speeds, tracking generally works very well, at

higher speeds the programme encounters issues tracking

the objects between frames. Figure 4.3 demonstrates this

failure, showing how the window is assigned a new ID each

frame. The old IDs have not yet timed out so they remain

on the screen for a few hundred milliseconds, hence why

they can be seen here. This is due to the midpoint-tracking

nature of the program where a window is only tracked

between frames if it lies within a certain threshold. While this threshold can be

increased, it results in unreliable assignment as the IDs can swap with the

surrounding windows.

In addition, the problem of Occlusion presents a real issue as once a window object

leaves the screen and times out, it cannot be retrieved. This would prevent the drone

from following a cleaning path as all other windows would move out of view when

approaching a window.

One possible solution to resolving both the occlusion and tracking issues would be

to use a tree data structure for all the windows so that their relative positions are

recorded. For example, if the programme knew that window 98 was above window

73 in Figure 4.3, it would be able to re-assign it the same ID after occlusion. From

this, it would likely be possible to reconstruct the entire map of windows using only

one window.

2.5.2 Thrust Vectoring

The current thrust vectoring technique applies thrust proportionally to the distance

from the centre of the screen. While this means that the drone does eventually reach

its target providing the tracking is not lost, it does result in overshoot. To rectify this,

a closed-loop controller could be implemented to critically damp the system. In

addition, the use of an accelerometer may allow for the mapping of movement within

the scene, which could assist the window tracking process. For example, if the drone

knew how far it was away from the window, it would be able to fine-tune the settings

to recognise windows at that distance.

2.5.3 Performance

When running on an i5-7300HQ with 12GB of ram and a Nvidia GTX1050M, the

Figure 4.3– Image

showing the failure of the

program to track the

bottom left window.

MECH3890 – Individual Engineering Project Page 22

computer vision programme performs well at low speeds, but begins to run slowly

when moving quickly. This may be due to the simulation environment running in

Unity’s interpreter simultaneously, as when using a video as the input (shown in

section 4.5), the programme performs consistently well. This indicates that the

programme may be able to run on a relatively low-power Raspberry Pi 4, as specified

in the design.

4.6 Real-World Testing

Figure 4.5 contains an image of

the output window when the input

to the CV programming was

changed to a video taken from a

drone [2]. This scene was chosen

as the weather is overcast, the

building has a consistent size and

shape of window, and the

movement is smooth and

continuous.

Although the programming does recognise and track windows, it does so very poorly

and unreliably even after tweaking the settings. This is to be expected because the

real world is much more complicated and is more detailed than the simulated

environment, therefore the window recognition process is much less straightforward.

Interestingly, the blinds behind the windows had little effect on the window

recognition performance, however there were a number of areas that were

incorrectly identified as windows and some windows that were not recognised

whatsoever.

As a result of the poor window recognition performance, the window tracking

suffered. This is because if the window is not detected within the timeout period, it is

discarded and therefore the tracking is lost.

To improve window recognition performance, a mask based on the geometry of the

environment could be used. This would mean that the surrounding pavement,

landscape and other buildings could be ignored, and then the settings could be

adjusted accordingly. While this would likely require the environment to be scanned,

it could be done so only once before the first cleaning operation, then stored in

memory and retrieved every time the drone is cleaning, as buildings do not change

regularly.

Figure 4.5 – The output window when the CV

programme is fed a real video [2] from a drone.

MECH3890 – Individual Engineering Project Page 23

5. Conclusion

5.1 Achievements

Through the evaluation of existing designs and literature [11, 3, 14, 60, 40, 35, 9, 6,

8, 7], a high level design specification has been developed for an autonomous

window cleaning quadcopter. From this, detail designs of the mechanical elements

and electrical systems of the robot have been created, a full bill of materials with cost

and weight breakdowns has been provided, and a full 3D CAD model has been

created in SolidWorks. Further evaluations of weight and endurance of the final robot

have been conducted by comparing the robot to a similarly sized commercial product

[72].

In addition, requirements for the autonomous system have been specified, and a 3D

real-time simulation environment for the drone has been created using Unity3D and

C#. Using this simulation, a computer vision programme to map and track windows

in a scene has been developed using the OpenCV library in Python. This

implementation is presented, and its performance is evaluated when used in both

simulated and real environments. Areas for further development are highlighted, and

potential solutions to problems are suggested.

5.2 Discussion

It was found that by using a quadcopter locomotion system, the robot can meet or

exceed all of its requirements while being versatile, accessible and affordable. In

addition, an axially orientated rotating drum brush was found to be the simplest and

most effective implementation of a cleaning system, noting the use of a tethered

water supply to loosen and wash away debris. While the use of a tethered power

supply would be desirable, it was found to be impractical in this scenario due to the

power requirements of the propulsive system and lack of commercially available

products.

The dimensions of the quadcopter were limited by the size of conventional building

windows and cost targets. Consequently, a 250mm chassis with 6” propellors and

2306 motors were designed and selected based upon a weight analysis of the drone,

and a 270mm wide cleaning head was designed. In addition, the inclination required

to apply 1kg equivalent of force was found to be around 20o from a simple rigid body

model based upon a 1kg normal force and assuming a coefficient of friction of 0.6

[38].

Moreover, the control systems were designed to make use of a Raspberry Pi 4 and

a PixHawk mini flight controller. The Pi 4 was selected because of its relatively high

MECH3890 – Individual Engineering Project Page 24

power, small size, low mass, and excellent flexibility, while the use of a dedicated

flight controller ensures that the safety of the device is not compromised by the CPU-

intensive computer vision programming.

While this design has been thoroughly considered, no part of the robot has been

manufactured. Consequently, its performance is unknown and no conclusion can be

drawn about the true effectiveness of the implementation.

However, the computer vision programming, used for the mapping and tracking of

windows, has had some testing in a simulated environment and with a pre-recorded

video [2]. Here, it was found that after fine-tuning the settings to the specific scene,

the programme can recognise windows relatively reliably but is less effective at

tracking them between frames. In addition, the programme does not track windows

after they have been occluded and occasionally mis-identifies them. This is because

the implementation, which finds the midpoint of each window in the current frame

and compares them to the previous frame, does not keep track of where the windows

are relative to one another. Implementing a tree data structure to determine the

positions of windows relative to each other is suggested as a method that would

likely fix these misidentification and occlusion problems.

When used on the pre-recorded video [2], the CV programme performs reasonably

well but does face the same issues as in the simulation but to a greater extent. This

is expected as the greater amount of detail, shadows and depth in reality makes the

scene trickier to digitally analyse. A technique using a 3D scan of the building to

mask the surrounding environment is suggested to minimise the number of false

window recognitions. Further work on the SLAM technique is required as the current

CV implementation is limiting and would not be able to autonomously clean windows

in its current state.

Overall, the design process for the CV implementation was somewhat effective, as

a functioning solution is presented, however the approach taken may need to be re-

considered or expanded using the findings of this report.

5.3 Conclusions

While the mechanical design aspects of the drone remain untested, the

implementation is assumed to be somewhat appropriate. The difficulties associated

with a tethered power supply forced the use of batteries, and this limits the flight time

to around 17 minutes which is less than ideal. The CV programme developed has

proved effective at recognising windows in both the simulated and real

environments, while it’s window tracking algorithm is less robust. Further work is

MECH3890 – Individual Engineering Project Page 25

required to develop these algorithms, and a change in approach may be necessary.

Altogether the CV programming has proved the concept of using OpenCV and

Python for window mapping.

5.4 Future Work

The mechanical systems of the drone would benefit from strength analysis and

optimisation using finite element methods in an effort to reduce weight, while the

electrical and control systems could be simulated. Afterwards, prototyping of the

drone and measuring its weight, power consumption and the friction coefficient

between the brush and windows would prove useful in determining the accuracy of

calculated data.

In addition, the CV programme used to recognise and track windows requires

significant further development to improve its effectiveness and reliability, and

additional algorithms need implementing for the cleaning mode of the drone. This

may be done using the relational approach suggested in the report, or by another

method. Moreover, the localisation approach would need to be determined and

implemented, perhaps using a stereo camera system as suggested.

Once all the above tasks have been conducted, the whole drone can be tested in a

real environment, and a critical evaluation of its design may be conducted.

6. References

[1] OpenCV, opencv_contrib, Unkown: GitHub, 2022.

[2] S. Pierce, Footage Of Robert A Long High School Facade, Unkown: Pexels, 2021.

[3] Aerones, Innovation in Wind Turbine Blade Maintenance, Riga: Aerones, Unknown.

[4] S. A. Sulaiman, A. K. Singh, M. M. M. Mokhtar and M. A. Bou-Rabee, Influence of
Dirt Accumulation on Performance of PV Panels, Unknown: Elsevier Ltd, 2014, p.
54.

[5] Airbus, A320 Family performance retention and fuel savings, Blagnac: Airbus,
2008, p. 46.

[6] R. Siegwart, I. R. 1.-. Nourbakhsh and D. Scaramuzza, Introduction to Autonomous
Mobile Robots, Cambridge, Mass.: MIT Press, 2011.

[7] N. Imaoka, S.-g. Roh, N. Yusuke and S. Hirose, SkyScraper-I: Tethered Whole
Windows Cleaning Robot, Taipei: IEEE, 2010.

[8] Serbot, GEKKO Facade Hightec Robot, Switzerland: Serbot, Unknown.

[9] Welbot Technology, SMART External Wall Cleaning Service, Hong Kong: Welbot
Technology, Unkown.

[10] S. Bouabdallah, P. Murrieri and R. Siegwart, Design and Control of an Indoor Micro
Quadrotor, New Orleans: IEEE, 2004.

[11] Aerones, Aerones Drone for High-Altitude Building Cleaning, Riga, 2018.

[12] K. Sangpradit, Study of the solar transmissivity of plastic cladding materials and
influence of dust and dirt on greenhouse cultivations, vol. 56, Pathum Thani:
Elsevier, 2014.

[13] O. Liang, How to Choose FPV Drone Motors, Unkown: OscarLiang.com, 2019.

MECH3890 – Individual Engineering Project Page 26

[14] J. Brown, Quadcopter Motors: Understanding The Driving Force of The Drones,
Unkown: Jack Brown, 2020.

[15] Solar WInd, DC Cable Sizing Tool, Unkown: Solar Wind, Unkown.

[16] Royal Society of Chemistry, Copper, Unkown: Royal Society of Chemistry, Unkown.

[17] Unmanned Tech, Axis AF227 2207 Brushless FPV Motor, Unkown: Unmanned
Tech, Unkown.

[18] Hobby Wing, XRotor Race Pro 2207, Unkown: Hobby Wing, Unkown.

[19] RC Life, Hobbywing XRotor 2207 race pro 2450KV v1, Unkown: RC Life, Unkown.

[20] EngineerX, BrotherHobby Returner R4 2206-2300KV Thrust Tests, Unkown:
YouTube, 2016.

[21] Build Your Own Drone, Brotherhobby Returner R4 2206 2300KV Motor, Unkown:
Build Your Own Drone, Unkown.

[22] EngineerX, GepRC GR2207.5-2400KV Static Thrust Tests & Overview, Unkown:
YouTube, 2019.

[23] Cheap Drone, GEPRC GEP-GR2207.5 2207.5 1700/1920KV 6S 2400/2750KV 4S
Brushless Motor CW Thread for RC Drone FPV Racing, Unkown: Cheap Drone,
Unkown.

[24] Unmanned Tech, T-Motor Velox V2 2306 Motor (1950kV, 2400kV) 4-6S, Unkown:
Unmanned Tech, Unkown.

[25] Unmanned Tech, iflight xing e-2306-2 6s brushless motor 1700kv-2450kv, Unkown:
Unmanned Tech, Unkown.

[26] B. P. N, Logitech c270 Webcam, Unkown: GrabCAD, 2019.

[27] P. Maroli, Pixhawk Mini, Unkown: GrabCAD, 2017.

[28] S. S. GUNDA, SERVO MOTOR, Unkown: GrabCAD, 2022.

[29] Craftedkwads, 2306 motor model, Unkown: GrabCAD, 2021.

[30] m. elfakharany, Drone blade, Unkown: GrabCAD, 2021.

[31] Optibelt, CAD Service Tool, Unkown: Optibelt, 2022.

[32] t. hdp, raspberry pi 3-B case, Unkown: GrabCAD, 2021.

[33] e. vaidya, emax esc, Unkown: GrabCAD, 2019.

[34] J. A. G. Canales, LIPO BATTERY, Unkown: GrabCAD, 2018.

[35] P. Pounds and R. Mahony, Design Principles of Large Quadrotors for Practical
Applications, Canberra: IEEE, 2009.

[36] Drone Authority, iFlight XING-E 2306 2-6S Brushless Motor, Unkown: Drone
Authority, 2022.

[37] M.-h. Hwang, H.-R. Cha and S. Y. Jung, Practical Endurance Estimation for
Minimizing Energy Consumption of Multirotor Unmanned Aerial Vehicles, Gwangju:
MDPI, 2018.

[38] R. Holopainen and E.-M. Salonen, Modelling Bristle Behaviour in Rotating Brush
Duct Cleaning, Helsinki: Otamedia, 2003.

[39] DigiKey Electronics, Crouzet 82862006, Unkown: DigiKey Electronics, 2022.

[40] A. D. L. ESCALERA, L. MORENO, M. A. SALICHS and J. M. ARMINGOL,
Continuous mobile robot localization by using structured light and a geometric map,
vol. 27, Unkown: Taylor & Francis, 1996, pp. 771-782.

[41] D. Ribas, J. Neira and P. Ridao, Underwater SLAM for Structured Environments
Using an Imaging Sonar, Berlin: Springer, 2010.

[42] Unkown, Radio Detection and Ranging, vol. 152, London: Nature, 1943, pp. 391-
392.

[43] M. I. Skolnik, Radar Handbook, New York & London: McGraw-Hill, 1970.

[44] R. T. H. Collis, Lidar, 8 ed., vol. 9, California, 1970.

[45] T. S. Taylor, Introduction to Laser Science and Engineering, Boca Raton: CRC
Press, 2019.

[46] A. D. Waite, Sonar for Practising Engineers, 3 ed., John Wiley & Sons, 2002.

MECH3890 – Individual Engineering Project Page 27

[47] M. Cazorla and D. Veijo, JavaVis: An Integrated Computer Vision Library for
Teaching Computer Vision, Alicante: Wiley, 2013.

[48] R. Fisher, S. Perkins, A. Walker and E. Wolfart, Khoros, Albuquerque: Unkown,
2003.

[49] OpenCV Team, About, San Jose: OpenCV, 2022.

[50] U. Köthe, The VIGRA Computer Vision Library Version 1.11.1, Heidelberg:
University of Heidelberg, 2017.

[51] CVIPtools Dev Team, Welcome to CVIPtools at SIUE, Illinois: Southern Illinois
University Edwardsville, 2022.

[52] L. Cruz, D. Lucio and L. Velho, Kinect and RGBD Images: Challenges and
Applications, 25 ed., Rio de Janeiro: IEEE, 2012.

[53] S. Naudet-Collette, K. Melbouci, V. Gey-Bellile, O. Ait-Aider and M. Dhome,
Constrained RGBD-SLAM, vol. 39, Gif-Sur-Yvette: Cambridge University Press,
2020, pp. 277-290.

[54] Intel, Intel® RealSense™ Depth Camera D435, Unkown: Intel, 2022.

[55] S. Izadi, R. A. Newcombe, D. Kim, O. Hilliges, D. Molyneaux, S. Hodges, P. Kohli,
J. Shotton, A. J. Davison and A. Fitzgibbon, KinectFusion: Real-Time Dynamic 3D
Surface Reconstruction and Interaction, Vancouver: SIGGRAPH, 2011.

[56] iRobot, Roomba, Unkown: iRobot, 2022.

[57] B. Tribelhorn and Z. Dodds, Evaluating the Roomba: A low-cost, ubiquitous platform
for robotics research and education, Rome: IEEE, 2007.

[58] A. El-Rabbany, Introduction to GPS: The Global Positioning System,
Boston/London: Artech House, 2002.

[59] D. J. Hall, Robotic Sensing Devices, Pittsburgh: Carnegie-Mellon University, 1984.

[60] J. Choi, M. Kim, J. Kim and W. Lee, Designing an Interactive Indoor Delivery Robot
and Its Implication, Unkown: Springer, 2022.

[61] A. L. Majdik, D. Verda, Y. Albers-Schoenberg and D. Scaramuzza, Air-ground
Matching: Appearance-based GPS-denied Urban Localization of Micro Aerial
Vehicles, 7 ed., vol. 32, Zurich: IEEE, 2015.

[62] T. Leroux, S.-H. Ieng and R. Benosman, Event-Based Structured Light for Depth
Reconstruction using Frequency Tagged Light Patterns, Pittsburgh: ResearchGate,
2018.

[63] M. Gupta, A. Agrawal, A. Veeraraghavan and S. G. Narasimhan, Structured Light
3D Scanning in the Presence of Global Illumination, Colorado Springs: IEEE, 2011.

[64] Intel, Intel® RealSense™ Depth Camera D455, Unkown: Intel, 2022.

[65] M. Anandhalli and V. P. Baligar, A novel approach in real-time vehicle detection and
tracking using Raspberry Pi, Hubbali: Elsevier, 2016.

[66] I. Iszaidy, R. Ngadiran, R. B. Ahmad, M. I. Jais and D. Shuhaizar, Implementation
of raspberry Pi for vehicle tracking and travel time information system: A survey,
Unkown: IEEE, 2016.

[67] N. Wanluk, S. Visitsattapongse, A. Juhong and C. Pintavirooj, Smart wheelchair
based on eye tracking, Bangkok: IEEE, 2016.

[68] The Pi Hut, Raspberry Pi 4 Model B, Unkown: The Pi Hut, 2022.

[69] PX4 Autopilot, PX4 User Guide, Unkwon: PX4, 2022.

[70] A. Gong and D. Verstraete, Development of a dynamic propulsion model for electric
UAVs, Cairns: Research Gate, 2015.

[71] Hobby Components, LM2596 DC-DC 3-35V adjustable step-down power Supply
module, Unkown: Hobby Components, 2022.

[72] DJI, Inspire 2 Specs, Unkown: DJI, Unkown.

[73] HobbyKing, Turnigy Heavy Duty 4000mAh 6S 60C Lipo Battery Pack w/XT90,
Unkown: HobbyKing.com, 2022.

[74] S. Dade, Pixhawk (and APM) Power Consumption, Unkown: DIY Drones, 2015.

[75] U. Tech, Pixhawk Mini Board, Unkown: Unmanned Tech, 2022.

MECH3890 – Individual Engineering Project Page 28

[76] Hobby King, Turnigy MultiStar BLheli_32 ARM 51A Race Spec ESC 2~6S (OPTO),
Unkown: Hobby King, 2022.

[77] Amazon UK, 1 Channel Relay Module, 5V 1 Channel Relay Module Relay Board
with Optocoupler Low Level Trigger Expansion Board for Arduino 5V/12V/24V(5V),
Unkown: Amazon UK, 2022.

[78] DigiKey Electronics, Crouzet 82862006, Unkown: DigiKey Electronics, 2022.

[79] The Pi Hut, TowerPro Servo Motor - SG92R Micro, Unkown: The Pi Hut, 2022.

[80] Logitech, C270, Unkown: Logitech, 2022.

[81] Hobby King, Diatone 6045 Plastic Self Tightening Propellers 6 x 4.5 (CW/CCW)
(Orange) (2 Pairs), Unkown: Hobby King, 2022.

[82] RS Components, OPTIBELT Timing Belt Pulley, Aluminium 4 mm, 6 mm Belt Width
x 2.5mm Pitch, 32 Tooth, Unkown: RS Components, 2022.

[83] RS Components, OPTIBELT 4 T2,5 / 420, Timing Belt, 168 Teeth, 420mm 4mm,
Unkown: RS Components, 2022.

[84] Simply Bearings, Major Branded 6042RS Rubber Sealed Deep Groove Ball Bearing
4x12x4mm, Unkown: Simply Bearings, 2022.

[85] Hortafix, Tefen Elbow 4mm, Unkown: Hortafix, 2022.

[86] Hortafix, Tefen Tee 4mm, Unkown: Hortafix, 2022.

[87] Hortafix, 4mm x 15M Black Pipe, Unkown: Hortafix, 2022.

[88] Easy Composites, High Strength Carbon Fibre Sheet, Unkown: Easy Composites,
2022.

[89] Easy Composites, VM100 Black 10min Methyl Methacrylate Adhesive, Unkown:
Easy Composites, 2022.

[90] OpenCV.org, OpenCV, Unkown: OpenCV.org, 2022.

[91] G. Bradski and A. Kaehler, Learing OpenCV: Computer Vision with the OpenCV
Library, Sebastopol: O'Reilly, 2008.

[92] K. Dawson-Howe, A Practical Introduction to Computer Vision with OpenCV,
Chichester: John Wiley and Sons Ltd, 2014.

[93] A. Speight, Bite-Size Python: An Introduction to Python Programming, Indianapolis:
John Wiley & Sons, 2020.

[94] opencv, opencv-python, Unkown: GitHub, 2022.

[95] Geopipe Inc, Real New York City Vol. 1, Unkown: Unity Asset Store, 2022.

[96] J. B. Postel and L. L. Garlick, Transmission Control Protocol Specification, Menlo
Park: Stanford Research Institute, 1976.

[97] B. Potter, SimpleTCP, Unkown: GitHub, 2017.

[98] Jet Brains, PyCharm, Unkown: Jet Brains, 2022.

[99] Python, About, Unkown: Python.org, 2022.

[100] Unity, Manual, Unkown: Unity, 2020.

[101] numpy, numpy, Unkown: GitHub, 2022.

[102] boppreh, keyboard, Unkown: GitHub, 2022.

[103] J. Brains, PyCharm Features, Unkown: Jet Brains, 2022.

[104] schelingb, UnityCapture, Unkown: GitHub, 2019.

[105] J. F. Canny, Finding Edges and Lines in Images, Massachusetts: MIT Articial
Intelligence Laboratory, 1983.

[106] OpenCV, Canny Edge Detection, Unkown: OpenCV, 2022.

[107] D. H. Douglas and T. K. Peucker, ALGORITHMS FOR THE REDUCTION OF THE
NUMBER OF POINTS REQUIRED TO REPRESENT A DIGITIZED LINE OR ITS
CARICATURE, 2 ed., vol. 10, Unkown: University of Toronto Press, 1973.

MECH3890 – Individual Engineering Project Page 29

Appendices

A.1 Supervisor Meeting Log

Table A.1.1 contains the record of meetings with Chengxu Zhou, the supervisor of

this project throughout the 2021/22 academic year. Figures A.1.2 – A.1.8 contain

images of the work shared during these meetings.

Figure A.1.1 – Meeting Log Table

N
o

.

D
a

te

T
im

e

Meeting Agenda
Progress Since
Last Meeting

Key Notes/Actions from meeting

1

1
4
/1

0
/2

0
2

1

1
5
:0

0

- Discuss
meeting plans for
the year.
- Evaluate some
examples of
previous robots.
- Brainstorm
ideas.

N/A - First
Meeting

- Decide which idea to proceed with.
- Evaluate different variations of the
design and detail a full design concept
with sensors and actuators specified.

2

1
9
/1

0
/2

0
2

1

1
0
:0

0

- Present and
discuss the
chosen robot
concept.

- Robot idea
decided upon
and a full
concept
developed
(window cleaning
robot) - See
Figure A.1.2.

- Determined that a quadcopter-based
cleaning robot would be preferable.
- Agreed that the robot needs to be
able to clean separate windows rather
than just a smooth glass façade.
- Therefore a quadcopter-based
concept must be developed.

3

2
6
/1

0
/2

0
2

1

1
0
:0

0

- Evaluate the
latest
quadcopter-
based concept.
- Discuss the key
elements of the
project, what is
going to be
focused on, and
how the design
process is going
to be structured.

- A further
quadcopter-
based concept
had been made,
with thought
given to the
navigational and
cleaning
mechanisms -
See Figure
A.1.3.

- Determined that Lidar and QR codes
are not necessary for the navigation
system.
- Discussed objectives of the project.
- SolidWorks Mock-Up needed for next
week, and bill of materials and
approximate costs needed in 2 weeks.

4

0
2
/1

1
/2

0
2

1

1
0
:0

0

- Discuss some
of the finer
details,
challenges and
solutions.

- Initial
SolidWorks
mock-up
developed.
- Thought given
to ethical
considerations.
- Literature
reviewed.

- Determined that the chassis must be
made from lighter materials to
minimise weight.
- Determined that an ethical evaluation
from the university is not required for
this project.
- Determine the positioning of the
navigation camera.
- For next meeting, continue
developing the SolidWorks model,
compare cleaning methods and begin
the literature review.

MECH3890 – Individual Engineering Project Page 30

5

0
9
/1

1
/2

0
2

1

1
0
:0

0

- Show first
prototype with bill
of materials,
costs and
purchasing list.

- Additional work
on SolidWorks
model – See
Figure A.1.4.
- Further
literature
reviewed.
- Scoping and
Planning
document plan.

- Discussed design elements and
improvements.
- Discussed design choices based
upon reviewed literature and existing
designs.
- For next meeting, finish scoping and
planning document for feedback.

6

2
3
/1

1
/2

0
2

1

1
0
:0

0

- Discuss
scoping
document and
areas for
improvement.

- Scoping and
planning
document close
to final.
- Consideration
given to design
choices.

- Feedback given on aim and scope of
project to ensure designs can be
justified.
- Discussion of project title.
- Layout of document considered.
- For next meeting, continue with the
mechanical design and the
implementation of the sensors and
actuators.

7

0
7
/1

2
/2

0
2

1

9
:3

0

- Discuss the
practical
implementation
of the designs.

- Mechanical
design close to
finished.
- Scoping and
planning
document
submitted.

- Various design elements Discussed.
- Decided to focus the project on
design, simulation and analysis rather
than making a prototype due to time
and monetary constraints.
- Agreed to finish the mechanical and
electrical design by the next meeting.

8

2
8
/0

1
/2

0
2

2

1
0
:3

0

- Discuss and
evaluate the final
mechanical and
electrical design.
- Consider the
approach moving
forward.

- Design targets
established.
- Mechanical and
electrical design
finished – See
Figure A.1.5.
- Weight analysis
conducted.

- Agreed to focus on the simulation of
the quadcopter's autonomous system
for the remainder of the project.
- Decided upon using Unity as the
simulation environment and OpenCV
as the computer vision library.
- For next meeting, have the simulation
environment set up and start the
computer vision programming to show
a demonstration.

9

1
4
/0

2
/2

0
2

2

2
:1

0

- Demonstrate
simulation
environment.
- Discuss window
recognition
approaches for
the CV
programming.

- Simulation
environment set
up.
- Basic proof of
concept
computer vision
programme
made – See
Figure A.1.6

- Agree to continue with the simulation
environment.
- Develop and implement a window
detection algorithm to be demonstrated
at the next meeting.

1
0

2
8
/0

2
/2

0
2

2

2
:1

0

- Demonstrate
working
simulation
environment with
window
recognition.
- Discuss window
tracking
implementation.

- Window
detection full
implementation –
See Figure
A.1.7.
- Documentation
of simulation
environment
started.

- Discussion of how the simulation can
detect windows in each frame but how
it cannot track them between frames.
- For the next meeting, design a
window tracking algorithm and
implement it.

MECH3890 – Individual Engineering Project Page 31

1
1

1
4
/0

3
/2

0
2

2

2
:1

0

- Look at
simulation and
plan moving
forward.
- Discuss final
report plan and
layout.

- Window
tracking
algorithm
partially
designed and
implemented –
See Figure
A.1.8.
- Final report
plan made.

- Discussion of the difficulties of
window tracking.
- Agreed that the programme is at a
reasonably acceptable level for a
demonstration.
- Further developments to the
programme can be made but the report
should be given priority.

Supervisor
Signature:
(all meetings)

(see signed meeting log – submitted separately)

Figure A.1.2 – Initial Window Cleaning robot concept, shared in meeting 2

Figure A.1.3 – The chosen concept, shared in meeting 3.

MECH3890 – Individual Engineering Project Page 32

Figure A.1.4 – The initial SolidWorks mock-up of the robot design, shared in meeting 5.

Figure A.1.5 – The final SolidWorks model of the window cleaning quadcopter, shared in

meeting 8.

MECH3890 – Individual Engineering Project Page 33

Figure A.1.6 – A demonstration of the ‘proof of concept’ simulation environment running in

real-time, shared in meeting 9.

Figure A.1.7 – Image demonstrating the window recognition capabilities of the custom

computer vision programming, shared in meeting 10.

MECH3890 – Individual Engineering Project Page 34

Figure A.1.8 – Image demonstrating the incomplete (at the time) implementation of the

window tracking algorithm, shared in meeting 11.

MECH3890 – Individual Engineering Project Page 35

A.2 Gannt Chart

Figure A.2.1 – Gantt Chart, split into two sections for clarity.

C
1

-
C

4
E1

 -
 E

4

W
/C

N
o

Ta
sk

D
ay

s
St

ar
t

En
d

M
T

W
T

F
M

T
W

T
F

M
T

W
T

F
M

T
W

T
F

M
T

W
T

F
M

T
W

T
F

M
T

W
T

F
M

T
W

T
F

M
T

W
T

F
M

T
W

T
F

M
T

W
T

F
M

T
W

T
F

M
T

W
T

F
M

T
W

T
F

M
T

W
T

F
M

T
W

T
F

M
T

W
T

F
M

T
W

T
F

M
T

W
T

F
M

T
W

T
F

M
T

W
T

F

1
Id

e
a

B
ra

in
st

o
rm

in
g

6
1

9
/1

0
/2

0
2

1
2

5
/1

0
/2

0
2

1

2
P

re
li

m
in

ar
y

R
e

se
ar

ch
13

1
9

/1
0

/2
0

2
1

0
1

/1
1

/2
0

2
1

3
H

ig
h

-L
e

ve
l D

e
si

gn
20

2
7

/1
0

/2
0

2
1

1
6

/1
1

/2
0

2
1

4
Sc

o
p

in
g

an
d

 p
la

n
n

in
g

20
0

3
/1

1
/2

0
2

1
2

3
/1

1
/2

0
2

1
1

5
Li

te
ra

tu
re

 R
e

vi
e

w
27

1
0

/1
1

/2
0

2
1

0
7

/1
2

/2
0

2
1

6
H

ig
h

-L
e

ve
l A

lg
o

ri
th

m
 D

e
si

gn
13

2
4

/1
1

/2
0

2
1

0
7

/1
2

/2
0

2
1

7
Tr

ac
ti

ve
 s

ys
te

m
 d

e
ta

il
 d

e
si

gn
48

2
4

/1
1

/2
0

2
1

1
1

/0
1

/2
0

2
2

2

8
C

le
an

in
g

sy
st

e
m

 d
e

ta
il

 d
e

si
gn

33
0

8
/1

2
/2

0
2

1
1

0
/0

1
/2

0
2

2
3

9
Si

m
u

la
ti

o
n

 E
n

vi
ro

n
m

e
n

t
Se

tu
p

10
2

5
/0

1
/2

0
2

2
0

4
/0

2
/2

0
2

2

10
D

e
ta

il
 A

lg
o

ri
th

m
 D

e
si

gn
43

1
3

/1
2

/2
0

2
1

2
5

/0
1

/2
0

2
2

3

11
A

lg
o

ri
th

m
 Im

p
le

m
e

n
ta

ti
o

n
21

1
2

/0
1

/2
0

2
2

0
2

/0
2

/2
0

2
2

12
Si

m
u

la
ti

o
n

 Im
p

le
m

e
n

ta
ti

o
n

45
0

1
/0

2
/2

0
2

2
1

8
/0

3
/2

0
2

2
4

14
Te

st
in

g
&

 C
V

 A
lg

o
ri

th
m

s
23

2
3

/0
2

/2
0

2
2

1
8

/0
3

/2
0

2
2

15
D

e
si

gn
 a

n
al

ys
is

43
0

9
/0

3
/2

0
2

2
2

1
/0

4
/2

0
2

2
5

W
e

e
k

23
W

e
e

k
24

1
4

/0
3

/2
0

2
2

2
1

/0
3

/2
0

2
2

2
5

/0
4

/2
0

2
2

0
2

/0
5

/2
0

2
2

W
e

e
k

22
W

e
e

k
19

W
e

e
k

20

2
8

/0
2

/2
0

2
2

0
7

/0
3

/2
0

2
2

W
e

e
k

21
W

e
e

k
17

W
e

e
k

18

0
6

/1
2

/2
0

2
1

1
0

/0
1

/2
0

2
2

1
7

/0
1

/2
0

2
2

2
4

/0
1

/2
0

2
2

3
0

/0
1

/2
0

2
2

0
7

/0
2

/2
0

2
2

1
4

/0
2

/2
0

2
2

2
1

/0
2

/2
0

2
2

W
e

e
k

11
W

e
e

k
12

W
e

e
k

13
W

e
e

k
14

W
e

e
k

15
W

e
e

k
16

W
e

e
k

7
W

e
e

k
8

W
e

e
k

9
W

e
e

k
10

0
8

/1
1

/2
0

2
1

1
5

/1
1

/2
0

2
1

2
2

/1
1

/2
0

2
1

2
9

/1
1

/2
0

2
1

W
e

e
k

4
W

e
e

k
5

W
e

e
k

6

1
8

/1
0

/2
0

2
1

2
5

/1
0

/2
0

2
1

0
1

/1
1

/2
0

2
1

C
1

-
C

4
E1

 -
 E

4

W
/C

N
o

Ta
sk

D
ay

s
St

ar
t

En
d

M
T

W
T

F
M

T
W

T
F

M
T

W
T

F
M

T
W

T
F

M
T

W
T

F
M

T
W

T
F

M
T

W
T

F
M

T
W

T
F

M
T

W
T

F
M

T
W

T
F

M
T

W
T

F
M

T
W

T
F

M
T

W
T

F
M

T
W

T
F

M
T

W
T

F
M

T
W

T
F

M
T

W
T

F
M

T
W

T
F

M
T

W
T

F
M

T
W

T
F

M
T

W
T

F

1
Id

e
a

B
ra

in
st

o
rm

in
g

6
1

9
/1

0
/2

0
2

1
2

5
/1

0
/2

0
2

1

2
P

re
li

m
in

ar
y

R
e

se
ar

ch
13

1
9

/1
0

/2
0

2
1

0
1

/1
1

/2
0

2
1

3
H

ig
h

-L
e

ve
l D

e
si

gn
20

2
7

/1
0

/2
0

2
1

1
6

/1
1

/2
0

2
1

4
Sc

o
p

in
g

an
d

 p
la

n
n

in
g

20
0

3
/1

1
/2

0
2

1
2

3
/1

1
/2

0
2

1
1

5
Li

te
ra

tu
re

 R
e

vi
e

w
27

1
0

/1
1

/2
0

2
1

0
7

/1
2

/2
0

2
1

6
H

ig
h

-L
e

ve
l A

lg
o

ri
th

m
 D

e
si

gn
13

2
4

/1
1

/2
0

2
1

0
7

/1
2

/2
0

2
1

7
Tr

ac
ti

ve
 s

ys
te

m
 d

e
ta

il
 d

e
si

gn
48

2
4

/1
1

/2
0

2
1

1
1

/0
1

/2
0

2
2

2

8
C

le
an

in
g

sy
st

e
m

 d
e

ta
il

 d
e

si
gn

33
0

8
/1

2
/2

0
2

1
1

0
/0

1
/2

0
2

2
3

9
Si

m
u

la
ti

o
n

 E
n

vi
ro

n
m

e
n

t
Se

tu
p

10
2

5
/0

1
/2

0
2

2
0

4
/0

2
/2

0
2

2

10
D

e
ta

il
 A

lg
o

ri
th

m
 D

e
si

gn
43

1
3

/1
2

/2
0

2
1

2
5

/0
1

/2
0

2
2

3

11
A

lg
o

ri
th

m
 Im

p
le

m
e

n
ta

ti
o

n
21

1
2

/0
1

/2
0

2
2

0
2

/0
2

/2
0

2
2

12
Si

m
u

la
ti

o
n

 Im
p

le
m

e
n

ta
ti

o
n

45
0

1
/0

2
/2

0
2

2
1

8
/0

3
/2

0
2

2
4

14
Te

st
in

g
&

 C
V

 A
lg

o
ri

th
m

s
23

2
3

/0
2

/2
0

2
2

1
8

/0
3

/2
0

2
2

15
D

e
si

gn
 a

n
al

ys
is

43
0

9
/0

3
/2

0
2

2
2

1
/0

4
/2

0
2

2
5

W
e

e
k

23
W

e
e

k
24

1
4

/0
3

/2
0

2
2

2
1

/0
3

/2
0

2
2

2
5

/0
4

/2
0

2
2

0
2

/0
5

/2
0

2
2

W
e

e
k

22
W

e
e

k
19

W
e

e
k

20

2
8

/0
2

/2
0

2
2

0
7

/0
3

/2
0

2
2

W
e

e
k

21
W

e
e

k
17

W
e

e
k

18

0
6

/1
2

/2
0

2
1

1
0

/0
1

/2
0

2
2

1
7

/0
1

/2
0

2
2

2
4

/0
1

/2
0

2
2

3
0

/0
1

/2
0

2
2

0
7

/0
2

/2
0

2
2

1
4

/0
2

/2
0

2
2

2
1

/0
2

/2
0

2
2

W
e

e
k

11
W

e
e

k
12

W
e

e
k

13
W

e
e

k
14

W
e

e
k

15
W

e
e

k
16

W
e

e
k

7
W

e
e

k
8

W
e

e
k

9
W

e
e

k
10

0
8

/1
1

/2
0

2
1

1
5

/1
1

/2
0

2
1

2
2

/1
1

/2
0

2
1

2
9

/1
1

/2
0

2
1

W
e

e
k

4
W

e
e

k
5

W
e

e
k

6

1
8

/1
0

/2
0

2
1

2
5

/1
0

/2
0

2
1

0
1

/1
1

/2
0

2
1

MECH3890 – Individual Engineering Project Page 36

A.3 Computer Vision Programming Highlights

A.3.1 Window Class

class Window:

 def __init__(self, ID, VertPos):

 self.ID = ID # A unique integer number

 self.VertPos = VertPos # A list containing the last

known position of the four verticies on the screen

 self.LastUpdate = time.time() # The absolute time at

which these parameters were set (in MS)

 self.mp = FindMidpoint(VertPos)

 self.available = False

 self.newInFrame = True

 self.newFrameCount = 0

 def UpdateVerts(self,VertPos):

 self.VertPos = VertPos # A list containing the last

known position of the four verticies on the screen

 self.LastUpdate = time.time() # The absolute time at

which these parameters were set (in MS)

 self.mp = FindMidpoint(VertPos)

 self.available = False

 def Refresh(self):

 self.available = True

 self.newFrameCount += 1

 global colourDelay

 if self.newFrameCount >= colourDelay:

 self.newInFrame = False

A.3.2 Window Recognition Function

def

findContours(imgCanny,img,contHips,contMinLength,contMaxLength):

#Function to separate out windows from an edge-detected image

 imgCanny = cv2.blur(imgCanny,(2,2))

 outConts = []

 image, conts, heigherarchy =

cv2.findContours(imgCanny,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMP

LE)

 imgConts = img.copy() # Copys the raw image to plot contours

on

 for cont in conts: # Iterates through all the contours in the

current image

 area = cv2.contourArea(cont)

 if area > contHips: #A "highpass" filter to remove

contours with very small areas due to noise.

 aLength = cv2.arcLength(cont,True)

 if aLength > contMinLength and aLength <

contMaxLength:

 #print(aLength)

 verticies = cv2.approxPolyDP(cont, 0.05*aLength,

True) #Finds the approximate verticies of all the contours

 cv2.drawContours(imgConts, [cont], -1, (255, 0,

255), 4)

 if len(verticies) == 4 : #If a contour has four

corners, draw a bounding box around it

 x, y, w, h = cv2.boundingRect(verticies)

MECH3890 – Individual Engineering Project Page 37

cv2.rectangle(img,(x,y),(x+w,y+h),(0,255,255),4)

 cornerPoints = []

 for vert in verticies: #Draws circles around

each of the window's corners

cv2.circle(img,(vert[0][0],vert[0][1]),2,(0,0,255),2)

 cornerPoints.append(vert[0])

 region = [[x,y,w,h],cornerPoints]

 outConts.append(region)

 pass

 return imgConts, outConts

A.3.3 Window Tracking Function

def trackWindows(Conts,windowList, MPtimeout,

MPclosenessThreshold, imgX, imgY):

 midpoint = []

 global autoMode

 for region in Conts: # Identifies the centre point of each

contour and adds them to midpoints queue

 VertPos = region[1]

 mp = FindMidpoint(VertPos)

 midpoint.append(mp) # Add all midpoints to a queue

 pass

 currentWindowList = []

 print("Number of Windows: ", len(windowList))

 for wind in windowList: # Adds all non-outdated windows to a

new array which is then used (to delete outdated windows)

 dt = np.abs(time.time()-wind.LastUpdate)

 if (dt*1000) < MPtimeout:

 wind.Refresh() # Resets the availability flag

 currentWindowList.append(wind)

 windowList = currentWindowList

 for point in midpoint: # Iterates through all the midpoints

in the current image

 pntindex = midpoint.index(point)

 fl = FindMinFeatureLength(Conts[pntindex])

 MPcloseness = (MPclosenessThreshold*fl/100)

 mindiff = MPcloseness + 1 # Sets an initial value for

mindiff which is used when when the program starts

 diff = []

 i = 0

 for wind in windowList: # Iterates through all the

previously tracked groups of midpoints

 thisdiff = np.abs((point[0]-wind.mp[0])+(point[1]-

wind.mp[1]))

 diff.append([i,thisdiff]) #Finds the overall

difference in points

 i += 1

 assigned = False

 if len(diff) >= 1:

 diff.sort(key=lambda y: y[1]) # Sorts the tuple by

the second element (diff value)

 i = 0

MECH3890 – Individual Engineering Project Page 38

 for dif in diff:

 if dif[1] < MPcloseness:

 grpindex = dif[0] # Finds the index of the

closest group

 if windowList[grpindex].available: # if the

group is availabe to be assigned

windowList[grpindex].UpdateVerts(Conts[pntindex][1]) # Updates

the verticies in the window to the new location

 assigned = True

 #print("Assigned point

",midpoint.index(point),"to existing location")

 break

 else:

 break

 if i > (len(diff)-1):

 break

 else:

 pass

 if not assigned: # If there are no points within the

closeness threshold, a new group is created

 global windowID

 windowID += 1

 wind = Window(windowID,Conts[pntindex][1])

 windowList.append(wind)

 #print("Assigned window ", midpoint.index(point), "to

new location")

 pass

 overlay = np.zeros((imgX,imgY,3), np.uint8)

 overlay = cv2.cvtColor(overlay, cv2.COLOR_RGB2RGBA)

 i = 0

 for wind in windowList:

 textSize =

cv2.getTextSize(str(wind.ID),cv2.FONT_HERSHEY_SIMPLEX, 0.8,2)

#Gets the text size to allow the text to be centralised

 if wind.newInFrame:

 colour = (0,0,255)

 else:

 colour = (255,255,0)

 cv2.putText(overlay,str(wind.ID),(wind.mp[0]-

round(textSize[0][0]/2),wind.mp[1]+round(textSize[0][1]/2)),cv2.F

ONT_HERSHEY_SIMPLEX, 1, colour,2)

 i += 1

 if autoMode:

 modeColour = (0,0,255)

 modeText = "Mode: Auto"

 else:

 modeColour = (0,255,0)

 modeText = "Mode: Manual"

cv2.putText(overlay,modeText,(400,20),cv2.FONT_HERSHEY_SIMPLEX,

1, modeColour,2)

 if len(windowList) >=1:

 mv, p1, p2 =

movePointToCentre(overlay,windowList[0].mp,FindMinFeatureLength(w

indowList[0].VertPos))

MECH3890 – Individual Engineering Project Page 39

 cv2.line(overlay, p1, p2, modeColour,2)

 else:

 autoMode = False

 mv = (0,0,0)

 return overlay, windowList, mv

A.3.4 Main Function

def main():

 global autoMode

 cap = openUnityCapture()

 loadSettings()

 host = socket.gethostname()

 port = 34343 # The same port as used by the server

 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

 s.connect((host, port))

 windowList = []

 manualControl = True

 while True:

 itns = cv2.getTrackbarPos("No. Iterations", "Controls")

 krnlX = cv2.getTrackbarPos("Kernal x", "Controls")

 krnlY = cv2.getTrackbarPos("Kernal y", "Controls")

 cannyL = cv2.getTrackbarPos("Canny low", "Controls")

 cannyH = cv2.getTrackbarPos("Canny high", "Controls")

 contHips = cv2.getTrackbarPos("Min Cont Area",

"Controls")

 contMinLength = cv2.getTrackbarPos("Min Cont Length",

"Controls")

 contMaxLength = cv2.getTrackbarPos("Max Cont Length",

"Controls")

 MPclosenessThreshold = cv2.getTrackbarPos("MP Closeness

Thresh.", "Controls") # Maximum number of previous frames kept

for tracking

 MPtimeout = cv2.getTrackbarPos("MP Timeout", "Controls")

Midpoint Tracking timeout

 krnl = np.ones((krnlX,krnlY), np.uint8)

 success, img = cap.read()

 h, w, _ = img.shape

 roi_h = round(0.81*h)

 roi = img[0:roi_h,0:w]

 imgDilation = cv2.dilate(roi, krnl, iterations=itns)

 imgErd = cv2.erode(imgDilation, krnl, iterations=itns)

 imgGrey = cv2.cvtColor(imgErd, cv2.COLOR_BGR2GRAY)

 imgCanny = cv2.Canny(imgGrey, cannyL, cannyH)

 imgConts, outConts =

findContours(imgCanny,roi,contHips,contMinLength,contMaxLength)

 trackingOverlay, windowList, mv = trackWindows(outConts,

windowList, MPtimeout, MPclosenessThreshold, roi.shape[0],

roi.shape[1])

 roi = cv2.cvtColor(roi, cv2.COLOR_RGB2RGBA)

 roi = cv2.addWeighted(roi,1,trackingOverlay,1,1)

 roi = cv2.cvtColor(roi, cv2.COLOR_RGBA2RGB)

 #moveTargetToCentre()

 outImg((roi,imgErd,imgConts,imgCanny),("Window

Detection","Dilated & Eroded","Contour Detection","Edge

Detection"))

 cv2.waitKey(1)

MECH3890 – Individual Engineering Project Page 40

 LSF = 10

 RSF = 10

 if keyboard.is_pressed('esc'):

 break

 if keyboard.is_pressed('z'):

 autoMode = not autoMode

 manualControl = not manualControl

 moveVector = [0, 0, 0, 0]

 if manualControl or not autoMode :

 autoMode = False

 if keyboard.is_pressed('w'):

 moveVector[2] = 1 *LSF

 elif keyboard.is_pressed('s'):

 moveVector[2] = -1 *LSF

 else:

 moveVector[2] = 0

 if keyboard.is_pressed('a'):

 moveVector[0] = -1 *LSF

 elif keyboard.is_pressed('d'):

 moveVector[0] = 1 *LSF

 else:

 moveVector[0] = 0

 if keyboard.is_pressed('e'):

 moveVector[3] = 1 *RSF

 elif keyboard.is_pressed('q'):

 moveVector[3] = -1 *RSF

 else:

 moveVector[3] = 0

 if keyboard.is_pressed('shift'):

 moveVector[1] = 1 *LSF

 elif keyboard.is_pressed('ctrl'):

 moveVector[1] = -1 *LSF

 else:

 moveVector[1] = 0

 else:

 autoMode = True

 moveVector[0] = round(mv[0]/10)

 moveVector[1] = round(-mv[1]/10)

 moveVector[2] = round(mv[2]/10)

 outData = str(moveVector[0]) + "," + str(moveVector[1]) +

"," + str(moveVector[2]) + "," + str(moveVector[3])

 s.send(outData.encode())

 saveSettings()

 s.close()

MECH3890 – Individual Engineering Project Page 41

A.4 Equation Derivations

A.4.1 Cleaning Motor Torque Derivation

(1) − 𝐹𝑅 = 𝜇𝑅

(2) − 𝑇𝐵 = 𝐹𝑅𝑟𝐵

(3) − 𝑇𝑀 = 𝑇𝐵 × 𝐺𝑟

Substituting Equations 1,2 and 3, and rearranging for motor torque

⇒ 𝑇𝑀 = 𝜇𝑅𝑟𝐵𝐺𝑟

Assuming:

𝜇 = 0.6, 𝑅 = 9.81𝑁, 𝑟𝐵 = 85𝑚𝑚, 𝐺𝑟 = 2,

𝑻𝑴 =1Nm

A.4.2 Inclination Angle Derivation

∑ 𝐹𝑥𝑑
= 0

⟹ 𝑅𝑐𝑜𝑠(𝛼) + 𝐹𝑅𝑠𝑖𝑛(𝛼) − (𝑔 + �̈�)𝑚𝑠𝑖𝑛(𝛼) = 0

⇒ 𝑅𝑐𝑜𝑠(𝛼) + (𝐹𝑅 − �̈�𝑚 − 𝑔𝑚)𝑠𝑖𝑛(𝛼) = 0

⇒ 𝑅𝑐𝑜𝑠(𝛼) = −(𝐹𝑅 − �̈�𝑚 − 𝑔𝑚)𝑠𝑖𝑛(𝛼)

⇒
𝑅

(𝐹𝑅 − �̈�𝑚 − 𝑔𝑚)
= −𝑡𝑎𝑛(𝛼)

⇒ 𝛼 = tan−1 (
𝑅

(�̈�𝑚 + 𝑔𝑚 − 𝑅𝜇equivalent)
)

Assuming:

𝑅 = 9.81𝑁, �̈� = 1𝑚𝑠−2, 𝑚 = 3𝑘𝑔, 𝑔 = 9.81𝑁𝑘𝑔−1, 𝜇equivalent = 0.6,

𝜶 = 𝟐𝟎. 𝟐𝟖𝐨

