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Abstract 

Buildings require regular maintenance and inspection to ensure that they meet their 

lifetime requirements, and this is traditionally done manually. However, with recent 

advancements in robotics, it may be possible to autonomise the processes to reduce 

costs. This purpose of this project was to design and evaluate an autonomous 

window cleaning robot, and this report contains the procedures followed, design 

specification, and critical evaluations of the final designs. 

The quadcopter locomotion method was chosen due to its versatility, simplicity, and 

availability of components, while an axial rotating drum brush with a ground-tethered 

water feed was designed. The use of a ground-tethered power supply was also 

investigated but was deemed impractical for this project. Consequently, the resulting 

product has a flight time of around 17 minutes with 178Wh of onboard batteries. 

In addition, a simulation environment in Unity was created, and a computer vision 

(CV) program was developed in Python using OpenCV [1] to recognise and track 

windows in the scene. While the filters used to recognise the windows were found to 

be reasonably effective, the implemented midpoint tracking method failed to track 

windows reliably. The CV programme was also tested on a pre-recorded video [2] 

where similar results were observed, although performance was generally worse due 

to the additional detail. A tree-based tracking algorithm is suggested to overcome 

this issue alongside the issue of occlusion. 
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1. Introduction 

1.1 Introduction 

In the modern world, materials such as glass, aluminium and concrete are widely 

used in construction, particularly as cladding in large buildings. These materials are 

exposed to the atmosphere and therefore are designed to be resistant to the 

elements, however without proper maintenance they are likely to degrade. This 

maintenance generally involves regular cleaning and inspection to ensure that debris 

from pollution and other environmental factors does not promote degradation of 

materials. Traditionally, this process has been very labour-intensive and therefore 

expensive, but with recent advancements in technology, it may be more economical 

to conduct the cleaning autonomously using a robot. 

In addition, the applications of autonomous cleaning robots extend well beyond just 

cleaning buildings, for example Aerones manufacture a commercial drone which is 

used for inspection and maintenance of large wind turbines [3]. Other areas include 

cleaning solar panels, where a small amount of dust or debris can reduce power 

output by as much as 85% [4], and the cleaning of an aircraft’s exterior where dirt 

can significantly increase drag and therefore fuel consumption [5]. 

The purpose of this project was to design and evaluate a cleaning robot, with a 

primary focus of cleaning individual windows on buildings. This report documents 

the design process for the mechanical, electrical and programming components of 

such a robot, the challenges faced, and potential solutions for them. 

1.2 Aim 

To design, simulate and evaluate an automated robot to clean windows of 

conventional buildings. 

This includes selecting the locomotion system (quadcopter) and cleaning system 

(axial rotating brush), designing the robot in CAD, creating a full bill of materials with 

a complete cost and weight breakdown, setting up a simulation environment, 

developing computer vision programming and critically evaluating its effectiveness.  
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1.3 Objectives 

Table 1.1 contains the objectives for this project, their deadlines and the work 

required to meet them. 

Table 1.1 – Project objectives, required work and deadlines. 

 Objective Required Work Deadline 

1 Create a high-level design 
specification for the robot. 

Evaluate existing cleaning and 
autonomous robots, their 
capabilities and limitations. 

30/11/21 

2 Design the mechanical aspects of 
the robot including the propulsive 
systems. 

Research the design process, 
create a design to meet the 
requirements in CAD and source 
components for the design. 

11/01/22 

3 Design the electrical aspects the 
robot. 

Evaluate the requirements, 
research different sensing/actuation 
methods and design their 
implementation in CAD. 

26/01/22 

4 Create a simulation environment 
for the drone. 

Determine which platform and 
languages to use, what libraries are 
needed and create the 
environment. 

08/02/22 

5 Create a computer vision 
programme to map and track 
windows in a scene. 

Determine suitable libraries, study 
computer vision operations and 
design processes to recognise and 
track windows. 

18/03/22 

6 Evaluate the mechanical, 
electrical and programming 
implementations.  

Study the implementations and their 
effectiveness, comparing them to 
commercial solutions where 
appropriate. 

21/04/22 

1.4 Report Layout 

Sections 2 and 3 detail the mechanical and electrical design respectively, and a 

complete bill of materials for both sections is presented at the end of section 3. In 

each of these sections, the overall design requirements are considered and specific 

requirements for each aspect of the robot are evaluated. From this, components are 

selected and their implementation is demonstrated in labelled diagrams and renders. 

Section 4 details the design process specifically for the window mapping computer 

programme. Here, aims are considered and the implementation is presented as a 

broken-down list of steps. Python code from the key parts of the computer 

programme is presented in Appendix 5. In addition, the effectiveness of the 

programme is evaluated using a pre-recorded video [2]. 

Section 5 concludes the report with a brief evaluation and discussion of the overall 

design and highlights areas for future work. 
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2. Mechanical Design 

For a robot to function correctly, it’s mechanical elements must be efficient and 

effective. This section details how the mechanical side of the design process was 

carried out and includes details of the high-level concept selection process. 

2.1 Objectives 

A number of design requirements were determined based upon the overall aims of 

the project. These specify that the vehicle must: 

1. Be able to start, manoeuvre, and stop under its own power while outside in 

mild weather conditions at altitudes of less than 2000m 

2. Be attached to a ground unit via a tether at all times, through which water and 

power are delivered, or alternatively be battery powered and have a run time 

of 10 minutes or greater. 

3. Be able to clean window panes of the most common sizes, orientations and 

heights. 

4. Be able to reach a window height of 10 metres while cleaning 

5. Consist of readily available and affordable components, with an overall part & 

material cost of less than £1000. 

2.2 Concept Selection 

2.2.1 Locomotion System 

For the robot to clean windows & building cladding, which are often vertically 

orientated, it must be able to navigate in a 3D environment in all directions at low 

speed. Therefore the choice of locomotion system was limited to three options: rotary 

wing, climbing, or hybrid UAV systems. Other systems like fixed-wing or rocket UAV 

propulsion were ruled out because of their inherent high-speed and low-control 

characteristics. Ground-based locomotion systems such as those presented by 

Siegwart, Illah and Scaramuzza [6] are clearly inappropriate as they do not meet the 

requirement of traversing vertical walls. 

Climbing robots can offer the advantage of lower energy consumption, as they are 

supported by the frictional force between themselves and the substrate/cable they 

climb on, while rotary wing aircraft rely on momentum and pressure thrust generated 

by the rotors which require continual energy input. However, climbing robots are far 

less flexible than rotary wing UAV as they are limited by the nature of the substrate 

material and the contours on it. Given this lack of flexibility, commercial climbing 

window cleaning robots are almost always tethered to the building via a safety cable 

to minimise the risk of the robots falling from the surface. 

Tethered window cleaning robots such as the SkyScraper-I [7], Gekko Façade [8] 

and Welbot Cleaner [9] require at least one fixing point at the top of the building to 
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function. This means that the owner must undertake significant installation and 

maintenance costs to use the product, and this may outweigh the benefit of 

automating the process altogether, particularly in small buildings. In addition, a robot 

that requires permanent infrastructure to operate will likely not be able to move 

between sites and therefore will not be used for a significant proportion of it’s life. If 

instead the robot could be taken between different sites, it could operate for a much 

lower cost per m2 of window cleaned as economies of scale will apply. 

Rotary wing aircraft are a compelling option for the locomotion system as they can 

navigate in true 3D space and generally do not require specific infrastructure to 

operate. Of these rotary wing aircraft, quadcopters are attractive because although 

heavier than single rotor aircraft, they have relatively high operational stability, 

excellent load capacities and are relatively compact [10]. In addition, quadcopters 

generally rely on varying the rotor speed for movement and do not require complex 

mechanisms like their single rotor counterparts [10]. Moreover, a large range of low-

cost quadcopter components are widely available. For these reasons, it was chosen 

to use a quadcopter propulsion system for this robot. 

2.2.2 Cleaning System 

Commercial automated window cleaning systems generally involve a variation of a 

rotating brush, although some rely on water high pressure water jets to remove dirt 

[11]. In an investigation by Sangpradit, it was found that polythene material that had 

been exposed to the elements and left to accumulate dirt was best cleaned by 

soaking and mechanically scrubbing, while the waterjet failed to lift much of the dirt 

[12]. For this reason, it was decided to implement a mechanical scrubbing brush with 

a water feed. An axial brush arrangement was chosen over radial brushes because 

the drone tilts to apply the normal force, and so a radial arrangement would require 

a complex and heavy tilting mechanism. In addition, given the high mass of water 

and its ability to prevent dust and take away particles from the cleaning site, it was 

decided to use a water feed that is tethered to the ground. 

2.3 Specification Outline 

2.3.1 Dimensions 

The cleaning head is the one of the main considerations when determining an 

appropriate size for the quadcopter because of design target 3; the requirement to 

be able to clean the most common sizes of windowpanes. Another primary 

consideration is that the cost of the quadcopter is likely to increase exponentially 

with increasing dimensions because a greater number of high-power motors, and 
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therefore electronic speed controllers (ESCs), would be required. Consequently, the 

dimensions of this prototype are likely to be smaller than an equivalent commercial 

solution to minimise cost. 

For the above reasons, it was decided that the quadcopter should use either 5 or 6 

inch diameter propellers with a 250mm square frame, as 8 inch propellors would 

drastically increase the overall size and weight while not offering a significant 

performance advantage. This would enable a cleaning head of around 270mm in 

length to be used, which is small enough to allow access to most windows. 

2.3.2 Mass 

A target mass of 3kg was selected by considering weights of similarly sized 

commercial quadcopters, the propulsive force generated by commercially available 

motor-rotor combinations, the weight of common LiPO batteries and the requirement 

to carry a tethered water tube up to heights of 10m. 

2.3.3 Normal Scrubbing Force 

From common experience, the normal force applied between a scrubber and 

substrate is closely linked to the rate of dirt removal; if you press harder while you 

scrub, you increase the shear force between the two surfaces and dirt is likely to be 

lifted faster. However, too much force may result in damage to the surface as the dirt 

is pressed into the substrate, therefore the normal force should be carefully chosen. 

From experience, humans vary the normal force automatically as we see areas that 

have not been properly cleaned, and then return to these areas with more force. 

To mimic the cleaning action of humans, a robot would require some form of closed-

loop control where the robot evaluates the cleanliness of the substrate before and 

after cleaning, and then adjusts the parameters accordingly to maximise efficiency. 

While this may be possible with more resources, it is an unrealistic expectation for 

this project, and so a pre-determined normal force was used. 

To determine this force, a hand was placed onto a vertical scale and a force was 

applied as it would be when cleaning, and it was determined to approximately be the 

equivalent of 1kg (9.81N). To achieve this, the quadcopter is required to tilt so that a 

component of its thrust force acts towards the wall, and this is affected by its weight 

and propulsive capabilities. Given that the maximum force of the propulsive system 

needs to be around twice that of the quadcopter’s weight of 3kg [13, 14] (or 30N), 

this force is realistically achievable. 

2.3.4 Propulsive Design 

To have the quadcopter powered via a tether cable is desirable because it enables 
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continuous operation, therefore the electrical power requirement was evaluated. 

Considering the quadcopter’s target mass of 3kg, and that the maximum thrust 

generated should be at least twice the quadcopter’s weight reference [13, 14], each 

rotor would need to generate a minimum of 1.5kg of thrust (14.7N). Table 2.3.1 

contains a number of commercially available quadcopter motor and rotor 

combinations that have been found to generate thrust in this region through static 

tests. Out of all these quadcopter-rotor pairs, the Axis AF227 was found to have the 

lowest peak power consumption at 760W, and therefore a quadcopter consisting of 

four of these rotors would require a 3040W power supply.  

Given that the maximum power limit of a standard mains UK outlet is 3000W (13A), 

the quadcopter would likely have to be powered from an industrial outlet, which are 

considerably less common than standard outlets. In addition, to transmit 3000W at 

24V (125A) with 95% efficiency, using an online calculator [15] it was calculated that 

a pair of cables with a cross section of 70mm2 would be required. Given that at least 

10 metres of cable is needed to reach the desired height, the quadcopter would need 

to carry at least 140cm3 of copper which would weigh 1.25kg assuming a density of 

8.96g cm3 [16], not to mention the additional mass from insulation, connectors and 

strain relief mechanisms.  

Table 2.3.1 – A non-exhaustive list of commercially available motor and rotor pairs that 

generate over 1500g of thrust. 

Brand Size 
Thrust 

/g 
Motor 

Mass /g 
Power 

/W 
Propellor 

Total 
Mass /g 

Motor 
Cost 

Axis AF227 [17] 2207 1591 50 760 GF 51466 216.52 £21.90 

Hobbywing Xrotor race pro 
[18] [19] 

2207 1890 32 953 
Azure Power 

5150 - 3 
152.36 £19.50 

Brotherhobby returner R4 
[20] [21] 

2206 1667 29 807 tj6045 132.8 £19.50 

GepRC GR2207 [22] [23] 
2207

.5 
1738 32 733 HQ 6045 146.8 £16.98 

T-Motor Velox V2 [24] 2306 1587 32 823 T5146 146 £12.45 

iFlight XING-E [25] 2306 1642 33 893 6045 151.2 £9.68 

Therefore, a power supply would most likely need to be fitted to the quadcopter to 

enable the use of a lighter transmission cable in which power could be supplied at 

much higher voltages to reduce resistive losses. However, it was determined that no 

commercially available power supplies meet the weight and size requirements for 

this application, hence a custom design would be required. Consequently, the 

decision was made to abandon the idea of supplying power via a tethered cable as 

the design of such a supply lies outside the scope of this project, and instead it was 

chosen to power the quadcopter using a conventional LiPO battery for this prototype. 
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In this case, given the relatively small cost of propellors, the iFlight XING-E 2306 

1700Kv [25] motors were chosen because of their low price and relatively low 

operating current which should mean they run cooler. In addition, they are relatively 

lightweight and compatible ESCs and batteries are readily available. 

2.4 Final Design 

Figure 2.4.1 contains a 

labelled render 

diagram of the final 

design. The principles 

outlined by Pounds and 

Mahony [35] for large 

practical quadrotors 

were followed 

wherever possible to 

ensure that the final 

design is efficient and 

effective. However, compromises were made in some areas, primarily due to the 

relatively low-cost target and the availability of commercial-grade UAV components. 

These include that many of the components are intended for hobby aircraft – the 

motors for example are commonly used in point-of-view (POV) racing quadcopters 

and are therefore not optimised for this practical application.  

While this may restrict product development in future, it was deemed appropriate to 

use hobby-grade components in this prototype as this project is only intended to 

investigate the concept, not to design a marketable product. 

2.4.1 Weight Analysis 

The design weight of the robot plays a pivotal role in motor and rotor selection, which 

is why it was one of the first parameters to be assigned. Throughout the design 

process, it was closely monitored to ensure that the final product meets this target. 

Figure 3.4 contains a complete list of all the components and their weights, and the 

overall mass of the final robot was calculated to be 3.089kg. 

While slightly over the target design mass, the quadcopter has met its requirements 

since the motors are specified to each have 1.642kg [36] of thrust which means the 

absolute maximum design mass of the quadcopter is 3.284kg [13, 14]. However, 

given the non-linear relationship between mass and endurance [37], it is desirable 

to minimise weight as much as possible.  

 
Figure 2.4.1 – Labelled Render Diagram showing some of the 

key design aspects of the robot. Some component CAD models 

provided by [26, 27, 28, 29, 30, 31, 32, 33, 34] 
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Further weight reduction may be achieved by optimising the chassis and cleaning 

head and using more energy dense batteries, as these are the heaviest components 

by a considerable margin.  

2.4.2 Cleaning System  

The direction of rotation 

was an important 

consideration in this 

design, as if the frictional 

force acts in the same 

direction as the 

quadcopter’s weight, the 

motors would be required 

to increase their power 

output and as a result, the quadcopter would have a tendency to be ‘sucked’ into the 

wall; whereas if the frictional force acts in the same direction as the thrust forces (as 

shown in Figure 2.4.2), the quadcopter is likely to be more stable and will have a 

lower power consumption. 

Knowing this, and the fact that the quadcopter must clean windows moving 

downwards due to the nature of gravity and its effect on the wastewater, it was 

determined that the linear velocity of the brush must be at least twice that of the 

quadcopter’s velocity while cleaning to ensure a good amount of shear force 

between the surface and brush for dirt removal. Consequently, the minimum required 

RPM of the brush was calculated using Equation 2.1, assuming that the quadcopter’s 

cleaning velocity is 0.5ms-1. 

  𝐵𝑅𝑃𝑀 =
𝑣𝑙

2𝜋𝑟
× 60 =

1

2𝜋 × 0.085
× 60 = 𝟏𝟏𝟐𝑹𝑷𝑴 (2.1) 

In addition, a suitable motor and gear ratio were selected to ensure that the motor 

has enough torque to rotate the brush at an acceptable velocity. To determine this, 

a simple model was used that assumed the brush to be a homogenous rigid cylinder, 

and that the coefficient of friction between the glass and the brush is 0.6. This value 

is based upon an approximate average of the experimental findings of Holopainen 

and Salonen from an investigation into the cleaning of metallic air ducts using 

brushes [38]. Although the substrate material is different in this investigation, glass 

windows are generally smooth, so the coefficient of friction is likely to be lower than 

that of the air duct material. Equation 2.2 was used to calculate the required motor 

torque, assuming a gear ratio of 1:1, and the derivation is presented in Appendix 4.1. 

 
Figure 2.4.2 – Free Body Diagram of a Window Cleaning 

Quadcopter 
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 𝑇𝑀 = 𝜇𝑅𝑟𝐵𝐺𝑟 = 0.6 × 9.81 × 0.085 × 1 = 𝟎. 𝟓𝑵𝒎 (2.2) 

From this evaluation, the Crouzet 82862006 [39] was chosen to be the drive motor 

for the brush. Since this motor cannot be packaged easily into the cleaning head, it 

was mounted in-board, and is connected to the cleaning brush via a 4mm wide timing 

belt. This type of belt was chosen because it is the narrowest commonly available 

timing belt and therefore minimises the gap between the bristles. 

The inclination angle of the quadcopter while cleaning, 𝛼, was calculated using 

Equation 2.3, assuming 1ms-2 acceleration downwards. The full derivation of this 

equation is presented in Appendix 4.2. 

𝛼 = tan−1 (
𝑅

(�̈�𝑚 + 𝑔𝑚 − 𝑅𝜇eq)
) = tan−1 (

9.81

(3 + 9.81 × 3 − 9.81 × 0.6)
) = 𝟐𝟎. 𝟑° (2.3) 

2.4.3 Cleaning Head Implementation 

Since the brush will be rotating at high speeds (greater 

than 112RPM) and will be loaded in the axial and radial 

directions, two ball bearings were selected. Here, both 

bearings are of the doubly sealed variety to ensure that 

the water from the cleaning operation does not wash out 

the grease, and equally so that the grease does not 

contaminate the working surface. However, the 

squeegee mechanism will only rotate by small fractions 

at very low speeds, therefore an unlubricated plain bearing was deemed suitable. 

To ensure that the head is capable of cleaning along the entirety of its width, the 

gaps for the supporting parts of the chassis and drive belt were minimised. 

Consequently, a bearing housing was created that sits within a recess in the end of 

the rollers which also acts as the pivot point for the squeegee blade. Figure 2.4.3 

demonstrates this implementation. 

2.4.4 Transitions Between Operational Modes 

Once the quadcopter is positioned next to the window, the brush will begin to turn 

and the quadcopter will gently touch the window, slowly increasing the inclination 

angle up to the desired value. It is important that the brush begins turning before it 

touches the window to prevent the larger static coefficient of friction from causing a 

sudden jolt which could make the quadcopter crash, and to prevent high current 

spikes from the brush’s drive motor when being started under load. 

  

 
Figure 2.4.3 – Close up of 

the bearing housing 

(shown transparent for 

clarity). 
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3. Electrical System Design 

The electrical systems of the robot were designed following the mechanical design as 

the selection of various components, including the propulsive motors, took place in the 

mechanical design phase. This section details the selection processes for components 

and provides an evaluation of the final design. 

3.1 Objectives 

From the overall objectives of the project, a number of specific objectives were 

defined for the autonomous system. These include that the quadcopter must: 

1. Take-off and manoeuvre 

2. Identify and track windows 

3. Generate a response to approach and clean the windows 

4. Land and disarm for the operator 

3.2 Environmental Sensing Methods 

For a robot to navigate autonomously in an environment, it must be able to conduct 

simultaneous localisation and mapping (SLAM) [40, 41, 6], and to achieve this it 

needs to sense the surrounding environment. This section details common 

environmental sensing methods and discusses their issues in this specific application, 

and ultimately describes which method is most appropriate and why. 

3.2.1 Wave-Detection-and-Ranging methods 

Radio detection and ranging (RADAR) was developed in the mid-20th century, 

primarily for military use [42], and was designed to identify and locate enemy aircraft 

and vessels in the battlefield [42]. Still used today, it is a contactless method for 

taking distance measurements from the surrounding environment, and makes use 

of a radio wave transmitter, radio detector and a precise clock to evaluate the time 

of flight (time between sending the pulse and receiving the reflection), which is 

proportional to the distance travelled [43].  

Light imaging, detection and ranging (LIDAR) is similar, except it makes use of Light 

Amplification by Stimulated Emission of Radiation (LASERs) and a light detector, in 

place of the radio equivalents [44] [45]. Although lidar has applications extending 

way beyond environmental sensing for robots, including measuring atmospheric 

conditions [44] and mapping the surfaces of terrestrial bodies [45], it is often used as 

one of the primary navigational sensing methods in robots [6] [41].  

Sound navigation and ranging (SONAR) uses sound waves to achieve the same 

result, and is often used in sub-marine environments [46] [41]. Ribas et. Al. discusses 
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how sonar can be used for “simultaneous localisation and mapping” [41] in 

underwater autonomous vehicles, despite their lesser reliability [41]. 

3.2.2 Computer Vision 

A number of image processing libraries such as JavaVis [47], Khoros [48], OpenCV 

[49], VIGRA [50] and CVIPtools [51] are available and enable patterns, colours, 

contours and other visual characteristics from images to be recognised and 

interpreted in real time. Although they may be computationally expensive [6], the 

high-bandwidth nature of vision [6] means that it may be possible to rely solely on 

computer vision for navigation. 

One challenge with computer vision techniques is determining the distance from and 

between objects in an image [6]. A number of different approaches to solving this 

problem exist, including: 

1. Calibration – a pre-determined pattern with known dimensions is placed in the 

scene, and the computer vision algorithm recognises it and can relate from it the 

surrounding environment [6]. 

2. Stereo imagery – multiple images are used, taken from two different cameras or 

the same camera at different locations, and compared to determined depth [6].  

3. Hybrid sensing – using another sensing method in combination with a camera and 

combining the depth data before processing. RGBD is an example, which is 

discussed in the next section. 

3.2.3 RGBD 

Red, Green, Blue and Depth (RGBD) sensors allow the mapping of a real 3D 

environment by combining a coloured image with a depth plot [52, 53]. When 

processed using more advanced computer vision programmes, a greater precision 

can be achieved versus regular RGB cameras [47]. 

Many RGBD cameras use the structured-light method to determine depth at different 

points in a scene [52] [54]. This method generally uses an IR projector and camera 

in conjunction with a traditional RGB camera and combines the sensor data from 

both systems into a single RGBD map [52].  

KinectFusion, a tool which enables rapid mapping of an indoor space using a moving 

Microsoft Kinect, was developed by Izadi et al. [55] and demonstrates that it is 

possible to conduct real-time localisation and mapping using only an RGBD sensor. 

3.2.4 Contact 

While contact sensors may be of use in some circumstances, using it as the primary 
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sensing method for navigation would likely prove inefficient and ineffective as when 

a vehicle, particularly an airborne vehicle, collides with an obstacle, it is likely to crash 

and suffer damage. Therefore the vehicle would be required to first survey the 

environment very slowly while mapping it out, which would be a very time consuming 

process. In fully autonomous robots such as iRobot’s Roomba [56], which primarily 

relies on contact and close-range non-contact sensing methods for navigation [57], 

this inefficiency is acceptable because the robot is designed to operate in one area 

only such that no intervention is required between operations.  

3.2.5 GPS Localisation 

The Global Positioning System (GPS) was developed by the United States’ 

Department of Defence for their military operations and was later made available for 

civilian use [58]. It makes use of an array of satellites which communicate time 

information to ground based antennas, from which accurate localisation can be 

determined [58]. 

3.2.6 Other Methods 

Methods such as those which rely on magnetic fields, fluid pressure or light intensity 

for example are unlikely to be of use for the main navigational systems because the 

operational environment will change as the robot completes its window cleaning 

task. However, these sensors may be of use in the other operational systems of the 

robot, such as measuring the rotation speed of the cleaning brush using an optical 

encoder or measuring the liquid flow rate using a flowmeter. A more exhaustive 

range of robotic sensing methods are discussed by Hall [59].  

3.2.7 Sensor Selection 

While an RGBD sensor coupled with a computer-vision programme is an obvious 

choice for many robots, the operational environment for a window cleaning 

quadcopter must be considered. This environment is outdoors and requires 

recognition of highly reflective and transmissive surfaces (windows). 

Although lidar is used extensively in robots [6] [45], one of its main drawbacks is its 

inability to consistently identify windows as most of the light passes through the glass 

[60]. This poses a real challenge for this application and therefore it was deemed 

inappropriate. 

Given this window cleaning robot will be required to operate in urban areas close to 

very large buildings, GPS localisation is likely to be severely inadequate as the urban 

environment is likely to have an adverse effect on the GPS signal and may result in 

miss-identification [61]. For this reason, GPS cannot be relied upon. 
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For sensors that use the structured light technique to gather depth information [40], 

such as the Intel Realsense D435 [54] and Microsoft’s Kinect [62], performance is 

likely to be poor outside as the structured light projectors within the sensors are 

unlikely to work reliably in brightly lit environments with reflective surfaces [63]. For 

this reason, a sensor which uses stereo-camera system to gather depth information, 

such as the Intel D455 [64], would be more appropriate. However, the monetary cost 

and weight is likely to increase as additional processing power would be required. 

An alternative technique which can achieve a similar result is the “structure from 

motion” [6] approach which makes use of the robot’s ability to move. In this method, 

multiple images are taken using one camera which are then compared to generate 

an accurate depth map [6]. Although this method is computationally expensive [6], it 

is likely to be more reliable than the structured light approach and cheaper than the 

stereovision approach, and for these reasons it was chosen to be the primary 

navigational method for the robot’s autonomous system. 

One of the challenges of this method is the requirement to know the position of the 

camera in the scene, however it may be possible to determine this if there is a known 

reference dimension within the field of view, or if the precise kinematics of the drone 

are measured, perhaps using an accelerometer.  

An alternative approach, investigated by Majdik et Al., is to use Google street view 

for localisation in urban environments [61]. While an interesting idea, it does not 

provide the level of flexibility required to clean windows, as buildings almost always 

have windows which are facing away from the street and therefore are not shown by 

the google street view photos. However, this technique could be used in combination 

with a structure-from-motion approach to improve localisation precision and 

reliability. 

Although the most suitable localisation method has been determined, this 

investigation does not include a full practical implementation of this method, as a 

decision was made to focus on the more unique window-cleaning specific aspects 

of the project. 

3.3 Data Processing 

While CV-based sensing techniques are generally more processor intensive than 

others [6], in recent years low cost and compact computers such as the Raspberry 

Pi have become significantly more powerful. For this reason, and the fact that Pi’s 

have proven effective CV platforms in other projects [65, 66, 67], it was decided to 

use a Raspberry Pi 4 [68] as the main autonomous computer for the robot. In 
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addition, it was decided to use a commercially available flight controller for the robot 

as if the Pi was used instead, the drone would be vulnerable to crashing when the 

processor is loaded by the CV programme. The PixHawk Mini running PX4 was 

selected as it is a relatively low cost open-source product with a number of great 

features and excellent community support [69]. 

 3.4 Final Design 

Figure 3.4 contains a diagram of all the electrical systems and the connections 

between different components.  

 
Figure 3.4 – Diagram of the final electrical system, showing connections between devices 

and the type of connection. Red lines show unregulated power supplied directly from the 

batteries (~22.2V), yellow lines show regulated power supplied at 5V, and blue lines show 

signal connections. Images taken from listing websites which are referenced in Table 3.1. 



MECH3890 – Individual Engineering Project  Page 15 
 

3.4.1 Endurance Analysis 

To evaluate the endurance of the quadcopter, the power consumption of devices 

and the efficiency of the power supplies were considered while travelling at a 

constant velocity and in cleaning mode, and these are presented in Table 3.1. The 

power consumption of the propulsive motors was derived by linearly interpolating 

between thrust and power values specified by the manufacturer [25] [36], the ESCs 

were assumed to have an electrical efficiency of 0.8 based upon an approximate 

average of the findings of Gong and Verstraete [70], the 5V voltage regulator was 

assumed to have an electrical efficiency of 0.9 based upon its maximum efficiency 

of 0.92 [71], and the wiring and connectors were assumed to have an electrical 

efficiency of 0.98. 

Given that the two 6S LIPO batteries have a capacity of 6000mAh at 22.2V, the 

quadcopter has a total of 178Wh of battery capacity. From this, the flight time in 

minutes was derived using Equation 3.1: 

𝐹𝑙𝑖𝑔ℎ𝑡 𝑇𝑖𝑚𝑒 =
𝑇𝑜𝑡𝑎𝑙 𝑊ℎ 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑇𝑜𝑡𝑎𝑙 𝑃𝑜𝑤𝑒𝑟
× 60 =

178

617
× 60 = 𝟏𝟕. 𝟑 𝑴𝒊𝒏𝒖𝒕𝒆𝒔 (3.1) 

Therefore, the quadcopter 

exceeds the flight time 

requirement of 10 minutes. 

Given that the DJI Inspire 2, a 

heavier quadcopter with a 

smaller battery, has an average 

power of 436W and a flight time 

of 27 minutes [72], the power 

consumption of this quadcopter 

is greater than expected.  

However, the data for these 

motors was provided by the manufacturer and is assumed to be reliable, therefore it 

may be suggested that the efficiency of the selected motors is significantly less than 

those used on the Inspire 2. This would benefit from a practical investigation where 

to determine the true power consumption of the motors and efficiency of the ESCs. 

Figure 3.5 shows how flight time varies for as mass increases for this specific 

powertrain. Power data was extrapolated from the motors’ specification sheet [36]. 

If the mass is decreased by 16% (500g), the endurance of the robot would be 

extended by 74%, thus showing the importance of minimising weight.  

 

Figure 3.5 – Plot of flight time against quadcopter 

mass for this powertrain. 

0

10

20

30

40

50

60

2000 3000 4000 5000

Fl
ig

h
t 

Ti
m

e 
/M

in
u

te
s

Quadcopter Mass/ grams



MECH3890 – Individual Engineering Project  Page 16 
 

Table 3.1 – A complete bill of materials, considering the masses and power draws of all the 
components. * Power draw based upon an estimate of electrical efficiency. 

 

Type Name QTY 
Total Avg. 

Power 
Draw/ W 

Total 
Mass / 

g 

Cost 
(each) 

Cost (total) 
E

le
c
tr

ic
a

l 
C

o
m

p
o

n
e
n
ts

 

Battery 
Turnigy 4000mAh 6S 
60C [73] 

2 - 1364 £52.07  £104.14 

Motors 
iFlight XING-E 2306 
1700kV [36] 

4 856.0  132 £11.38  £45.52 

Flight 
Controller 

Pixhawk Mini [74] 
[75] 

1 2.5 12 £51.13 £51.13 

Navigation 
Computer 

Raspberry Pi [68] 1 6.0 46 £34.00 £34.00 

ESCs 
Turnigy MultiStar 
BLheli_32 ARM 51A 
[76] 

4 171.2* 69 £16.07 £64.28 

PI PSU 
Voltage Regulator 
[71] 

1 1.2* 20 £1.99 £1.99 

Cleaning Brush Motor Relay [77] 1 0.5 (est) 18 £7.09 £7.09 

Cleaning 
Head 
Motor 

Crouzet 82862006 
[78] 

1 3.9 160 £111.29 £111.29 

Squeegee 
servo 

TowerPro SG92R 
[79] 

1 3.3 9 £4.00 £4.00 

Camera Logitech C270 [80]  1 2.5 75 £25.99 £25.99 

Wiring & 
Connectors 

Estimate  1 20.9* 
100 
(est) 

£10.00 £10.00 

M
e

c
h
a

n
ic

a
l 
C

o
m

p
o

n
e
n
ts

 

Propellors HQ Prop 6045 [81] 4 - 20 £0.26 £1.03 

Cleaning 
Head 

Custom 3D printed 
with brush bristles 

1 - 
400 
(est) 

£5.00 £5.00 

Drive Pully 
Optibelt 32T Timing 
Belt Pully [82] 

1 - 20 £8.11 £8.11 

Drive Belt 
Optibelt 4 T2,5 / 420 
[83] 

1 - 10 (est) £9.96 £9.96 

Brush 
Bearings 

604_2RS [84] 2 - 4  £2.39 £4.78 

Fixings & 
Fasteners 

Overall Assumed 1 - 50 (est) £5.00 £5.00 

Elbow Pipe 
Fitting 

4mm Tefen Elbow 
[85] 

2 - 4 (est) £1.25 £2.50 

Tee Pipe 
Fitting 

4mm Tefen Tee [86] 3 - 6 (est) £1.25 £3.75 

Pipe 
4mm ID x 15M Pipe 
[87] 

1 - 
100 
(est) 

£4.25 £4.25 

Water in 12M of pipe 1 - 150 £0.00 £0.00 

Chassis - 
Material 

2mm Carbon Fibre 
Sheet 950X500 [88] 

1 - 300  £153.30 £153.30 

Chassis - 
Adhesive 

VM100 [89] 1 - 20 (est) £5.70 £5.70 

Totals 1068 W 3090 g  £662.81 
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4. Computer Vision Implementation 

While localisation is not unique to this application and is a problem faced by many 

autonomous robots, the window mapping process is novel. Therefore, the decision 

was made to focus on the mapping processes, and the development and final 

implementation of these are discussed in this section. 

4.1 Objectives 

The second and third objectives listed in section 3.1 specify that the quadcopter’s 

autonomous system must be able to ‘Identify & Track Windows' and 'Generate a 

response to approach and clean the windows’. These objectives rely on the 

programming of the computer-vision system, and therefore this system is designed 

to these requirements. 

4.2 Approach 

As discussed in section 3.2, a number of computer vision libraries exist. OpenCV 

was chosen because it is a mature, open-source library that has backing from a 

number of large organisations like Intel, Google and Microsoft [90], and the fact that 

there are many resources regarding its implementation and use [91] [92].  

Python was chosen as the development platform for the computer vision 

programming because it is highly portable, supported on many different platforms 

and is highly object-orientated meaning it has excellent scalability [93]. In addition, 

the OpenCV library is commonly used via its python implementation [94], meaning 

there are many community resources available. 

4.3 Simulation Environment 

The 3D graphics engine Unity was 

used to simulate the physical 

environment for the quadcopter, 

and the camera output from this 

environment was streamed to the 

python programming via Windows 

DirectShow. This is the same way 

that a webcam is streamed to 

different programs on a Windows 

computer and therefore can be substituted for one. This video stream is the only 

data passed to the python programming from the simulation environment, which is 

analogous to a real implementation. Assets from a New York themed pack [95] were 

used to create the scene. 

 
Figure 4.1 – Data flow between the simulation 

environment and the autonomous control 

programming. 
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To imitate the transmission of thrust vectors from the Raspberry Pi to the PixHawk 

flight controller, Transmission Control Protocol (TCP) was used. Here, a TCP server 

was configured in the C# programming, and a TCP client was configured in Python. 

TCP was chosen as it is a connection-orientated and robust method of 

communication [96] that has readily available libraries which make setting up the 

server and client relatively straightforward [97] [98]. 

Figure 4.1 demonstrates the flow of data between the simulated environment and 

the autonomous system programming 

4.4 Final Implementation 

The final implementation uses Python 3.3.7 [99], running in real time via PyCharm 

Community 2020.1.4’s built in interpreter [98]. Table 4.1 lists the libraries used in 

both the Python and C# programming and what they have been used for. 

Table 4.1 – Libraries used in both the C# and Python Programming. 

 Library Name Version Description 

C
#
 

SimpleTCP  [97] 1.0.24 

Allows quick and easy initialisation and 

management of a TCP server, used for 

thrust commands from the Python controller. 

System.Collections Inbuilt in Unity 

2020.3.27f1 

[100] 

Allows use of coroutines and other functions. 

UnityEngine Required for scripts to work with Unity. 

P
y
th

o
n
 

opencv-contrib-

python [94] [1] 
3.4.17.61 

The OpenCV library for python with 

additional modules. 

numpy [101] 1.21.5 
Allows manipulation of data created using 

the opencv-python library. 

keyboard [102] 0.13.5 Enables keyboard input to be used. 

socket 

Inbuilt in 

PyCharm 

2020.1.4 

[103] 

Used for to setup a TCP client and send 

thrust data to the server running in Unity. 

csv 
Used for reading and writing the settings on 

each launch and close of the programme. 

exists (from os.path) 
Used to check that settings file exists before 

opening. 

time 
Used to manage timeouts on window objects 

(during object tracking). 

A video demonstration of the final implementation is available online at: 

https://www.youtube.com/watch?v=9L-0Ks-nzPc 

https://www.youtube.com/watch?v=9L-0Ks-nzPc
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The functional aspects of the 

computer vision programme 

are split into six distinct stages: 

1. Frame Acquisition: The 

stream is created using the 

UnityCapture library [104], 

and is opened using the 

OpenCV library in Python 

[94] 

2. Frame processing: Each 

frame is taken individually 

and the following steps are carried out on them to prepare and simplify the image 

ready for window detection: 

a. Cropping (numpy function)– Unwanted areas are removed from the 

image. This is done first to save on processing power. 

b. Dilating (OpenCV Function) – A morphological filter is used with a square 

kernel, the size of which is defined by the user, to remove any small 

border regions in the image (e.g. window frames). The number of 

iterations is also defined by the user. 

c. Eroding (OpenCV Function)– A second morphological filter with the same 

size of kernel and number of iterations is used to counter-act some of the 

enlargement effects of the dilating operation.  

d. Greyscale Conversion (OpenCV Function) – The image is converted into 

greyscale. This step is carried out after dilation and erosion to ensure 

boundaries between different colours of similar brightness are not lost. 

3. Window Recognition: The following steps are carried out to find the windows in 

each frame: 

a. Canny Edge Detection (OpenCV Function) – Finds all the edges of an 

image based on Canny’s algorithm [105, 106]. Upper and lower threshold 

values are defined by the user. 

b. Contour Detection (OpenCV Function) – Finds all the closed contours in 

the binary edge-detected image. This effectively filters out all the open 

contours. 

c. Vertex Detection (OpenCV Function) – Approximately locates all the 

vertices of the closed contours using the Douglas-Peucker algorithm 

[107]. 

d. Vertex Filter – Uses the fact that most buildings have rectangularly-

 
Figure 4.2 – The output window showing the real time 

images at various stages in the computer vision 

process. The top right output shows the initial image 

overlayed with the final window tracking and force 

vectoring line. 
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shaped windows to filter any shapes that do not have four vertices. 

e. Dimension Filters – Minimum and maximum window sizes can also be 

defined by the user to prevent the programme from assuming any very 

large or very small objects are windows. 

4. Window Tracking: Tracked window objects are stored in a custom window class 

which are identified by unique ID numbers, and these numbers are overlayed on 

the output to show how the programme recognises that windows are unique and 

where it fails to track them. The following processes are carried out for each 

frame, noting that a list of tracked window objects is stored between frames: 

a. Firstly, the last update time of each of the tracked windows is checked, 

and any windows that have exceeded the timeout are discarded. This 

saves memory and processing power, and prevents old windows from re-

appearing. 

b. Then the midpoints of all the recognised windows in the current frame are 

calculated and are each compared the last known location of all the 

tracked windows. If the difference in midpoints is less than a threshold 

value, and the tracked window hasn’t already been assigned, the window 

in the current frame is assumed to be the same as the tracked window. If 

the tracked window has already been assigned, the next closest window 

is evaluated. 

c. If there are no tracked windows within the threshold distance, it is 

assumed that the window has appeared in this frame, and a new tracked 

window object is created.  

5. Thrust Vectoring: When in auto mode, the programme calculates the difference 

between the centre of the image and the position of the window with the lowest 

ID number, and applies a translational thrust vector with the aim of centring the 

window on the frame. Once the centre of the window lies within 10 pixels of the 

centre of the frame, the programme will apply thrust such that the quadcopter 

approaches the window whilst maintaining its central position. When the 

quadcopter is so close that the window is too large to be recognised with the 

current settings, the thrust vectoring is stopped. At this stage, a further cleaning 

algorithm would need to be implemented. A line is drawn on the output window 

to show the direction of the vector and this turns red when in auto mode. 

6. Data Output & User Interface: A control panel and video output window are 

presented to the user, on which the detected windows are highlighted and 

numbered in real time. This allows the user to fine-tune the settings for the 

specific site which are saved in a CSV file between executions of the programme. 
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Figure 4.2 contains a capture of the output window. 

4.5 Simulation Testing 

4.5.1 Tracking & Occlusion 

While at low speeds, tracking generally works very well, at 

higher speeds the programme encounters issues tracking 

the objects between frames. Figure 4.3 demonstrates this 

failure, showing how the window is assigned a new ID each 

frame. The old IDs have not yet timed out so they remain 

on the screen for a few hundred milliseconds, hence why 

they can be seen here. This is due to the midpoint-tracking 

nature of the program where a window is only tracked 

between frames if it lies within a certain threshold. While this threshold can be 

increased, it results in unreliable assignment as the IDs can swap with the 

surrounding windows.  

In addition, the problem of Occlusion presents a real issue as once a window object 

leaves the screen and times out, it cannot be retrieved. This would prevent the drone 

from following a cleaning path as all other windows would move out of view when 

approaching a window. 

One possible solution to resolving both the occlusion and tracking issues would be 

to use a tree data structure for all the windows so that their relative positions are 

recorded. For example, if the programme knew that window 98 was above window 

73 in Figure 4.3, it would be able to re-assign it the same ID after occlusion. From 

this, it would likely be possible to reconstruct the entire map of windows using only 

one window. 

2.5.2 Thrust Vectoring 

The current thrust vectoring technique applies thrust proportionally to the distance 

from the centre of the screen. While this means that the drone does eventually reach 

its target providing the tracking is not lost, it does result in overshoot. To rectify this, 

a closed-loop controller could be implemented to critically damp the system. In 

addition, the use of an accelerometer may allow for the mapping of movement within 

the scene, which could assist the window tracking process. For example, if the drone 

knew how far it was away from the window, it would be able to fine-tune the settings 

to recognise windows at that distance. 

2.5.3 Performance 

When running on an i5-7300HQ with 12GB of ram and a Nvidia GTX1050M, the 

 
Figure 4.3– Image 

showing the failure of the 

program to track the 

bottom left window. 



MECH3890 – Individual Engineering Project  Page 22 
 

computer vision programme performs well at low speeds, but begins to run slowly 

when moving quickly. This may be due to the simulation environment running in 

Unity’s interpreter simultaneously, as when using a video as the input (shown in 

section 4.5), the programme performs consistently well. This indicates that the 

programme may be able to run on a relatively low-power Raspberry Pi 4, as specified 

in the design. 

4.6 Real-World Testing 

Figure 4.5 contains an image of 

the output window when the input 

to the CV programming was 

changed to a video taken from a 

drone [2]. This scene was chosen 

as the weather is overcast, the 

building has a consistent size and 

shape of window, and the 

movement is smooth and 

continuous.  

Although the programming does recognise and track windows, it does so very poorly 

and unreliably even after tweaking the settings. This is to be expected because the 

real world is much more complicated and is more detailed than the simulated 

environment, therefore the window recognition process is much less straightforward. 

Interestingly, the blinds behind the windows had little effect on the window 

recognition performance, however there were a number of areas that were 

incorrectly identified as windows and some windows that were not recognised 

whatsoever. 

As a result of the poor window recognition performance, the window tracking 

suffered. This is because if the window is not detected within the timeout period, it is 

discarded and therefore the tracking is lost. 

To improve window recognition performance, a mask based on the geometry of the 

environment could be used. This would mean that the surrounding pavement, 

landscape and other buildings could be ignored, and then the settings could be 

adjusted accordingly. While this would likely require the environment to be scanned, 

it could be done so only once before the first cleaning operation, then stored in 

memory and retrieved every time the drone is cleaning, as buildings do not change 

regularly. 

 
Figure 4.5 – The output window when the CV 

programme is fed a real video [2] from a drone. 
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5. Conclusion 

5.1 Achievements 

Through the evaluation of existing designs and literature [11, 3, 14, 60, 40, 35, 9, 6, 

8, 7], a high level design specification has been developed for an autonomous 

window cleaning quadcopter. From this, detail designs of the mechanical elements 

and electrical systems of the robot have been created, a full bill of materials with cost 

and weight breakdowns has been provided, and a full 3D CAD model has been 

created in SolidWorks. Further evaluations of weight and endurance of the final robot 

have been conducted by comparing the robot to a similarly sized commercial product 

[72]. 

In addition, requirements for the autonomous system have been specified, and a 3D 

real-time simulation environment for the drone has been created using Unity3D and 

C#. Using this simulation, a computer vision programme to map and track windows 

in a scene has been developed using the OpenCV library in Python. This 

implementation is presented, and its performance is evaluated when used in both 

simulated and real environments. Areas for further development are highlighted, and 

potential solutions to problems are suggested.  

5.2 Discussion 

It was found that by using a quadcopter locomotion system, the robot can meet or 

exceed all of its requirements while being versatile, accessible and affordable. In 

addition, an axially orientated rotating drum brush was found to be the simplest and 

most effective implementation of a cleaning system, noting the use of a tethered 

water supply to loosen and wash away debris. While the use of a tethered power 

supply would be desirable, it was found to be impractical in this scenario due to the 

power requirements of the propulsive system and lack of commercially available 

products. 

The dimensions of the quadcopter were limited by the size of conventional building 

windows and cost targets. Consequently, a 250mm chassis with 6” propellors and 

2306 motors were designed and selected based upon a weight analysis of the drone, 

and a 270mm wide cleaning head was designed. In addition, the inclination required 

to apply 1kg equivalent of force was found to be around 20o from a simple rigid body 

model based upon a 1kg normal force and assuming a coefficient of friction of 0.6 

[38]. 

Moreover, the control systems were designed to make use of a Raspberry Pi 4 and 

a PixHawk mini flight controller. The Pi 4 was selected because of its relatively high 



MECH3890 – Individual Engineering Project  Page 24 
 

power, small size, low mass, and excellent flexibility, while the use of a dedicated 

flight controller ensures that the safety of the device is not compromised by the CPU-

intensive computer vision programming. 

While this design has been thoroughly considered, no part of the robot has been 

manufactured. Consequently, its performance is unknown and no conclusion can be 

drawn about the true effectiveness of the implementation.  

However, the computer vision programming, used for the mapping and tracking of 

windows, has had some testing in a simulated environment and with a pre-recorded 

video [2]. Here, it was found that after fine-tuning the settings to the specific scene, 

the programme can recognise windows relatively reliably but is less effective at 

tracking them between frames. In addition, the programme does not track windows 

after they have been occluded and occasionally mis-identifies them. This is because 

the implementation, which finds the midpoint of each window in the current frame 

and compares them to the previous frame, does not keep track of where the windows 

are relative to one another. Implementing a tree data structure to determine the 

positions of windows relative to each other is suggested as a method that would 

likely fix these misidentification and occlusion problems. 

When used on the pre-recorded video [2], the CV programme performs reasonably 

well but does face the same issues as in the simulation but to a greater extent. This 

is expected as the greater amount of detail, shadows and depth in reality makes the 

scene trickier to digitally analyse. A technique using a 3D scan of the building to 

mask the surrounding environment is suggested to minimise the number of false 

window recognitions. Further work on the SLAM technique is required as the current 

CV implementation is limiting and would not be able to autonomously clean windows 

in its current state.  

Overall, the design process for the CV implementation was somewhat effective, as 

a functioning solution is presented, however the approach taken may need to be re-

considered or expanded using the findings of this report. 

5.3 Conclusions 

While the mechanical design aspects of the drone remain untested, the 

implementation is assumed to be somewhat appropriate. The difficulties associated 

with a tethered power supply forced the use of batteries, and this limits the flight time 

to around 17 minutes which is less than ideal. The CV programme developed has 

proved effective at recognising windows in both the simulated and real 

environments, while it’s window tracking algorithm is less robust. Further work is 
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required to develop these algorithms, and a change in approach may be necessary. 

Altogether the CV programming has proved the concept of using OpenCV and 

Python for window mapping. 

5.4 Future Work 

The mechanical systems of the drone would benefit from strength analysis and 

optimisation using finite element methods in an effort to reduce weight, while the 

electrical and control systems could be simulated. Afterwards, prototyping of the 

drone and measuring its weight, power consumption and the friction coefficient 

between the brush and windows would prove useful in determining the accuracy of 

calculated data. 

In addition, the CV programme used to recognise and track windows requires 

significant further development to improve its effectiveness and reliability, and 

additional algorithms need implementing for the cleaning mode of the drone. This 

may be done using the relational approach suggested in the report, or by another 

method. Moreover, the localisation approach would need to be determined and 

implemented, perhaps using a stereo camera system as suggested.  

Once all the above tasks have been conducted, the whole drone can be tested in a 

real environment, and a critical evaluation of its design may be conducted. 
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Appendices 

A.1 Supervisor Meeting Log 

Table A.1.1 contains the record of meetings with Chengxu Zhou, the supervisor of 

this project throughout the 2021/22 academic year. Figures A.1.2 – A.1.8 contain 

images of the work shared during these meetings. 

Figure A.1.1 – Meeting Log Table 

N
o
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D
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im

e
 

Meeting Agenda 
Progress Since 
Last Meeting 

Key Notes/Actions from meeting 

1
 

1
4
/1

0
/2

0
2

1
 

1
5
:0

0
 

- Discuss 
meeting plans for 
the year. 
- Evaluate some 
examples of 
previous robots. 
- Brainstorm 
ideas. 

N/A - First 
Meeting 

- Decide which idea to proceed with. 
- Evaluate different variations of the 
design and detail a full design concept 
with sensors and actuators specified. 

2
 

1
9
/1

0
/2

0
2

1
 

1
0
:0

0
 

- Present and 
discuss the 
chosen robot 
concept. 

- Robot idea 
decided upon 
and a full 
concept 
developed 
(window cleaning 
robot) - See 
Figure A.1.2. 

- Determined that a quadcopter-based 
cleaning robot would be preferable. 
- Agreed that the robot needs to be 
able to clean separate windows rather 
than just a smooth glass façade. 
- Therefore a quadcopter-based 
concept must be developed. 

3
 

2
6
/1

0
/2

0
2

1
 

1
0
:0

0
 

- Evaluate the 
latest 
quadcopter-
based concept. 
- Discuss the key 
elements of the 
project, what is 
going to be 
focused on, and 
how the design 
process is going 
to be structured. 

- A further 
quadcopter-
based concept 
had been made, 
with thought 
given to the 
navigational and 
cleaning 
mechanisms - 
See Figure 
A.1.3. 

- Determined that Lidar and QR codes 
are not necessary for the navigation 
system. 
- Discussed objectives of the project. 
- SolidWorks Mock-Up needed for next 
week, and bill of materials and 
approximate costs needed in 2 weeks. 

4
 

0
2
/1

1
/2

0
2

1
 

1
0
:0

0
 

- Discuss some 
of the finer 
details, 
challenges and 
solutions. 

- Initial 
SolidWorks 
mock-up 
developed. 
- Thought given 
to ethical 
considerations. 
- Literature 
reviewed. 

- Determined that the chassis must be 
made from lighter materials to 
minimise weight. 
- Determined that an ethical evaluation 
from the university is not required for 
this project. 
- Determine the positioning of the 
navigation camera. 
- For next meeting, continue 
developing the SolidWorks model, 
compare cleaning methods and begin 
the literature review. 
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5
 

0
9
/1

1
/2

0
2

1
 

1
0
:0

0
 

- Show first 
prototype with bill 
of materials, 
costs and 
purchasing list. 

- Additional work 
on SolidWorks 
model – See 
Figure A.1.4. 
- Further 
literature 
reviewed. 
- Scoping and 
Planning 
document plan. 

- Discussed design elements and 
improvements. 
- Discussed design choices based 
upon reviewed literature and existing 
designs. 
- For next meeting, finish scoping and 
planning document for feedback. 

6
 

2
3
/1

1
/2

0
2

1
 

1
0
:0

0
 

- Discuss 
scoping 
document and 
areas for 
improvement. 

- Scoping and 
planning 
document close 
to final. 
- Consideration 
given to design 
choices. 

- Feedback given on aim and scope of 
project to ensure designs can be 
justified. 
- Discussion of project title. 
- Layout of document considered. 
- For next meeting, continue with the 
mechanical design and the 
implementation of the sensors and 
actuators. 

7
 

0
7
/1

2
/2

0
2

1
 

9
:3

0
 

- Discuss the 
practical 
implementation 
of the designs. 

- Mechanical 
design close to 
finished. 
- Scoping and 
planning 
document 
submitted. 

- Various design elements Discussed. 
- Decided to focus the project on 
design, simulation and analysis rather 
than making a prototype due to time 
and monetary constraints. 
- Agreed to finish the mechanical and 
electrical design by the next meeting. 

8
 

2
8
/0

1
/2

0
2

2
 

1
0
:3

0
 

- Discuss and 
evaluate the final 
mechanical and 
electrical design. 
- Consider the 
approach moving 
forward. 

- Design targets 
established. 
- Mechanical and 
electrical design 
finished – See 
Figure A.1.5. 
- Weight analysis 
conducted. 

- Agreed to focus on the simulation of 
the quadcopter's autonomous system 
for the remainder of the project. 
- Decided upon using Unity as the 
simulation environment and OpenCV 
as the computer vision library. 
- For next meeting, have the simulation 
environment set up and start the 
computer vision programming to show 
a demonstration. 

9
 

1
4
/0

2
/2

0
2

2
 

2
:1

0
 

- Demonstrate 
simulation 
environment. 
- Discuss window 
recognition 
approaches for 
the CV 
programming. 

- Simulation 
environment set 
up. 
- Basic proof of 
concept 
computer vision 
programme 
made – See 
Figure A.1.6 

- Agree to continue with the simulation 
environment. 
- Develop and implement a window 
detection algorithm to be demonstrated 
at the next meeting. 

1
0
 

2
8
/0

2
/2

0
2

2
 

2
:1

0
 

- Demonstrate 
working 
simulation 
environment with 
window 
recognition. 
- Discuss window 
tracking 
implementation. 

- Window 
detection full 
implementation – 
See Figure 
A.1.7. 
- Documentation 
of simulation 
environment 
started. 

- Discussion of how the simulation can 
detect windows in each frame but how 
it cannot track them between frames. 
- For the next meeting, design a 
window tracking algorithm and 
implement it. 
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1
1
 

1
4
/0

3
/2

0
2

2
 

2
:1

0
 

- Look at 
simulation and 
plan moving 
forward. 
- Discuss final 
report plan and 
layout. 

- Window 
tracking 
algorithm 
partially 
designed and 
implemented – 
See Figure 
A.1.8. 
- Final report 
plan made. 

- Discussion of the difficulties of 
window tracking. 
- Agreed that the programme is at a 
reasonably acceptable level for a 
demonstration. 
- Further developments to the 
programme can be made but the report 
should be given priority. 

Supervisor 
Signature: 
(all meetings) 

(see signed meeting log – submitted separately) 

 

 

 
Figure A.1.2 – Initial Window Cleaning robot concept, shared in meeting 2 

 

 
Figure A.1.3 – The chosen concept, shared in meeting 3. 
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Figure A.1.4 – The initial SolidWorks mock-up of the robot design, shared in meeting 5. 

 

 
Figure A.1.5 – The final SolidWorks model of the window cleaning quadcopter, shared in 

meeting 8. 
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Figure A.1.6 – A demonstration of the ‘proof of concept’ simulation environment running in 

real-time, shared in meeting 9. 

 

 
Figure A.1.7 – Image demonstrating the window recognition capabilities of the custom 

computer vision programming, shared in meeting 10. 
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Figure A.1.8 – Image demonstrating the incomplete (at the time) implementation of the 

window tracking algorithm, shared in meeting 11. 
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A.2 Gannt Chart 

  

Figure A.2.1 – Gantt Chart, split into two sections for clarity. 
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A.3 Computer Vision Programming Highlights 

A.3.1 Window Class 

class Window: 

    def __init__(self, ID, VertPos): 

        self.ID = ID  # A unique integer number 

        self.VertPos = VertPos  # A list containing the last 

known position of the four verticies on the screen 

        self.LastUpdate = time.time()  # The absolute time at 

which these parameters were set (in MS) 

        self.mp = FindMidpoint(VertPos) 

        self.available = False 

        self.newInFrame = True 

        self.newFrameCount = 0 

 

    def UpdateVerts(self,VertPos): 

        self.VertPos = VertPos  # A list containing the last 

known position of the four verticies on the screen 

        self.LastUpdate = time.time()  # The absolute time at 

which these parameters were set (in MS) 

        self.mp = FindMidpoint(VertPos) 

        self.available = False 

 

    def Refresh(self): 

        self.available = True 

        self.newFrameCount += 1 

        global colourDelay 

        if self.newFrameCount >= colourDelay: 

            self.newInFrame = False 

 

A.3.2 Window Recognition Function 

def 

findContours(imgCanny,img,contHips,contMinLength,contMaxLength): 

#Function to separate out windows from an edge-detected image 

    imgCanny = cv2.blur(imgCanny,(2,2)) 

    outConts = [] 

    image, conts, heigherarchy = 

cv2.findContours(imgCanny,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMP

LE) 

    imgConts = img.copy() # Copys the raw image to plot contours 

on 

    for cont in conts: # Iterates through all the contours in the 

current image 

        area = cv2.contourArea(cont) 

        if area > contHips: #A "highpass" filter to remove 

contours with very small areas due to noise. 

            aLength = cv2.arcLength(cont,True) 

            if aLength > contMinLength and aLength < 

contMaxLength: 

                #print(aLength) 

                verticies = cv2.approxPolyDP(cont, 0.05*aLength, 

True) #Finds the approximate verticies of all the contours 

                cv2.drawContours(imgConts, [cont], -1, (255, 0, 

255), 4) 

 

                if len(verticies) == 4 : #If a contour has four 

corners, draw a bounding box around it 

                    x, y, w, h = cv2.boundingRect(verticies) 
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cv2.rectangle(img,(x,y),(x+w,y+h),(0,255,255),4) 

                    cornerPoints = [] 

                    for vert in verticies:  #Draws circles around 

each of the window's corners 

                        

cv2.circle(img,(vert[0][0],vert[0][1]),2,(0,0,255),2) 

                        cornerPoints.append(vert[0]) 

                    region = [[x,y,w,h],cornerPoints] 

                    outConts.append(region) 

        pass 

 

    return imgConts, outConts 

 

 

A.3.3 Window Tracking Function 

def trackWindows(Conts,windowList, MPtimeout, 

MPclosenessThreshold, imgX, imgY): 

 

    midpoint = [] 

    global autoMode 

    for region in Conts:    # Identifies the centre point of each 

contour and adds them to midpoints queue 

        VertPos = region[1] 

        mp = FindMidpoint(VertPos) 

        midpoint.append(mp)    # Add all midpoints to a queue 

        pass 

    currentWindowList = [] 

    print("Number of Windows: ", len(windowList)) 

    for wind in windowList: # Adds all non-outdated windows to a 

new array which is then used (to delete outdated windows) 

        dt =  np.abs(time.time()-wind.LastUpdate) 

        if (dt*1000) < MPtimeout: 

            wind.Refresh()  # Resets the availability flag 

            currentWindowList.append(wind) 

    windowList = currentWindowList 

    for point in midpoint:  # Iterates through all the midpoints 

in the current image 

        pntindex = midpoint.index(point) 

        fl = FindMinFeatureLength(Conts[pntindex]) 

        MPcloseness = (MPclosenessThreshold*fl/100) 

        mindiff = MPcloseness + 1 # Sets an initial value for 

mindiff which is used when when the program starts 

        diff = [] 

        i = 0 

        for wind in windowList:    # Iterates through all the 

previously tracked groups of midpoints 

            thisdiff = np.abs((point[0]-wind.mp[0])+(point[1]-

wind.mp[1])) 

            diff.append([i,thisdiff]) #Finds the overall 

difference in points 

            i += 1 

 

        assigned = False 

        if len(diff) >= 1: 

            diff.sort(key=lambda y: y[1]) # Sorts the tuple by 

the second element (diff value) 

            i = 0 
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            for dif in diff: 

                if dif[1] < MPcloseness: 

                    grpindex = dif[0]  # Finds the index of the 

closest group 

                    if windowList[grpindex].available: # if the 

group is availabe to be assigned 

                        

windowList[grpindex].UpdateVerts(Conts[pntindex][1])  # Updates 

the verticies in the window to the new location 

                        assigned = True 

                    #print("Assigned point 

",midpoint.index(point),"to existing location") 

                        break 

                else: 

                    break 

                if i > (len(diff)-1): 

                    break 

                else: 

                    pass 

 

        if not assigned:  # If there are no points within the 

closeness threshold, a new group is created 

            global windowID 

            windowID += 1 

            wind = Window(windowID,Conts[pntindex][1]) 

            windowList.append(wind) 

            #print("Assigned window ", midpoint.index(point), "to 

new location") 

        pass 

 

 

    overlay = np.zeros((imgX,imgY,3), np.uint8) 

    overlay = cv2.cvtColor(overlay, cv2.COLOR_RGB2RGBA) 

    i = 0 

    for wind in windowList: 

        textSize = 

cv2.getTextSize(str(wind.ID),cv2.FONT_HERSHEY_SIMPLEX, 0.8,2)    

#Gets the text size to allow the text to be centralised 

        if wind.newInFrame: 

            colour =  (0,0,255) 

        else: 

            colour = (255,255,0) 

        cv2.putText(overlay,str(wind.ID),(wind.mp[0]-

round(textSize[0][0]/2),wind.mp[1]+round(textSize[0][1]/2)),cv2.F

ONT_HERSHEY_SIMPLEX, 1, colour,2) 

        i += 1 

 

    if autoMode: 

        modeColour = (0,0,255) 

        modeText = "Mode: Auto" 

    else: 

        modeColour = (0,255,0) 

        modeText = "Mode: Manual" 

 

    

cv2.putText(overlay,modeText,(400,20),cv2.FONT_HERSHEY_SIMPLEX, 

1, modeColour,2) 

    if len(windowList) >=1: 

        mv, p1, p2 = 

movePointToCentre(overlay,windowList[0].mp,FindMinFeatureLength(w

indowList[0].VertPos)) 
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        cv2.line(overlay, p1, p2, modeColour,2) 

    else: 

        autoMode = False 

        mv = (0,0,0) 

    return overlay, windowList, mv 

 

A.3.4 Main Function 

def main(): 

    global autoMode 

    cap = openUnityCapture() 

    loadSettings() 

    host = socket.gethostname() 

    port = 34343  # The same port as used by the server 

    s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) 

    s.connect((host, port)) 

    windowList = [] 

    manualControl = True 

    while True: 

        itns = cv2.getTrackbarPos("No. Iterations", "Controls") 

        krnlX = cv2.getTrackbarPos("Kernal x", "Controls") 

        krnlY = cv2.getTrackbarPos("Kernal y", "Controls") 

        cannyL = cv2.getTrackbarPos("Canny low", "Controls") 

        cannyH = cv2.getTrackbarPos("Canny high", "Controls") 

        contHips = cv2.getTrackbarPos("Min Cont Area", 

"Controls") 

        contMinLength = cv2.getTrackbarPos("Min Cont Length", 

"Controls") 

        contMaxLength = cv2.getTrackbarPos("Max Cont Length", 

"Controls") 

        MPclosenessThreshold = cv2.getTrackbarPos("MP Closeness 

Thresh.", "Controls")  # Maximum number of previous frames kept 

for tracking 

        MPtimeout = cv2.getTrackbarPos("MP Timeout", "Controls")  

# Midpoint Tracking timeout 

 

        krnl = np.ones((krnlX,krnlY), np.uint8) 

        success, img = cap.read() 

 

        h, w, _ = img.shape 

        roi_h = round(0.81*h) 

        roi = img[0:roi_h,0:w] 

 

        imgDilation = cv2.dilate(roi, krnl, iterations=itns) 

        imgErd = cv2.erode(imgDilation, krnl, iterations=itns) 

        imgGrey = cv2.cvtColor(imgErd, cv2.COLOR_BGR2GRAY) 

        imgCanny = cv2.Canny(imgGrey, cannyL, cannyH) 

        imgConts, outConts = 

findContours(imgCanny,roi,contHips,contMinLength,contMaxLength) 

        trackingOverlay, windowList, mv = trackWindows(outConts, 

windowList, MPtimeout, MPclosenessThreshold, roi.shape[0], 

roi.shape[1]) 

        roi = cv2.cvtColor(roi, cv2.COLOR_RGB2RGBA) 

        roi = cv2.addWeighted(roi,1,trackingOverlay,1,1) 

        roi = cv2.cvtColor(roi, cv2.COLOR_RGBA2RGB) 

        #moveTargetToCentre() 

        outImg((roi,imgErd,imgConts,imgCanny),("Window 

Detection","Dilated & Eroded","Contour Detection","Edge 

Detection")) 

        cv2.waitKey(1) 
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        LSF = 10 

        RSF = 10 

 

        if keyboard.is_pressed('esc'): 

            break 

        if keyboard.is_pressed('z'): 

            autoMode = not autoMode 

            manualControl = not manualControl 

 

        moveVector = [0, 0, 0, 0] 

        if manualControl or not autoMode : 

            autoMode = False 

            if keyboard.is_pressed('w'): 

                moveVector[2] = 1 *LSF 

            elif keyboard.is_pressed('s'): 

                moveVector[2] = -1 *LSF 

            else: 

                moveVector[2] = 0 

 

            if keyboard.is_pressed('a'): 

                moveVector[0] = -1 *LSF 

            elif keyboard.is_pressed('d'): 

                moveVector[0] = 1 *LSF 

            else: 

                moveVector[0] = 0 

 

            if keyboard.is_pressed('e'): 

                moveVector[3] = 1 *RSF 

            elif keyboard.is_pressed('q'): 

                moveVector[3] = -1 *RSF 

            else: 

                moveVector[3] = 0 

 

            if keyboard.is_pressed('shift'): 

                moveVector[1] = 1 *LSF 

            elif keyboard.is_pressed('ctrl'): 

                moveVector[1] = -1 *LSF 

            else: 

                moveVector[1] = 0 

        else: 

            autoMode = True 

            moveVector[0] = round(mv[0]/10) 

            moveVector[1] = round(-mv[1]/10) 

            moveVector[2] = round(mv[2]/10) 

 

        outData = str(moveVector[0]) + "," + str(moveVector[1]) + 

"," + str(moveVector[2]) + "," + str(moveVector[3]) 

        s.send(outData.encode()) 

 

    saveSettings() 

 

    s.close() 
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A.4 Equation Derivations 

A.4.1 Cleaning Motor Torque Derivation 

(1) −  𝐹𝑅 = 𝜇𝑅 

(2) −  𝑇𝐵 = 𝐹𝑅𝑟𝐵 

(3) −  𝑇𝑀 = 𝑇𝐵 × 𝐺𝑟 

Substituting Equations 1,2 and 3, and rearranging for motor torque 

⇒ 𝑇𝑀 = 𝜇𝑅𝑟𝐵𝐺𝑟 

Assuming: 

𝜇 = 0.6, 𝑅 = 9.81𝑁, 𝑟𝐵 = 85𝑚𝑚,  𝐺𝑟 = 2, 

𝑻𝑴 =1Nm 

A.4.2 Inclination Angle Derivation 

∑ 𝐹𝑥𝑑
= 0 

⟹ 𝑅𝑐𝑜𝑠(𝛼) + 𝐹𝑅𝑠𝑖𝑛(𝛼) − (𝑔 + �̈�)𝑚𝑠𝑖𝑛(𝛼) = 0 

⇒ 𝑅𝑐𝑜𝑠(𝛼) + (𝐹𝑅 − �̈�𝑚 − 𝑔𝑚)𝑠𝑖𝑛(𝛼) = 0 

⇒ 𝑅𝑐𝑜𝑠(𝛼) = −(𝐹𝑅 − �̈�𝑚 − 𝑔𝑚)𝑠𝑖𝑛(𝛼) 

⇒
𝑅

(𝐹𝑅 − �̈�𝑚 − 𝑔𝑚)
= −𝑡𝑎𝑛(𝛼) 

⇒ 𝛼 = tan−1 (
𝑅

(�̈�𝑚 + 𝑔𝑚 − 𝑅𝜇equivalent)
) 

Assuming: 

𝑅 = 9.81𝑁, �̈� = 1𝑚𝑠−2,  𝑚 = 3𝑘𝑔,  𝑔 = 9.81𝑁𝑘𝑔−1,  𝜇equivalent = 0.6, 

𝜶 = 𝟐𝟎. 𝟐𝟖𝐨 

 


