

Computer Science Non-Examination Assessment

Alex Bury

1 Alex Bury

Contents

 Page
Analysis
 1.1 Background to Project 2
 1.2 Current system 2
 1.3 End-User Interview 3
 1.4 Prototyping 4
 1.5 Data Volumetrics 4
 1.6 Implementation 5
 1.7 Objectives 5
Design
 2.1 Graphical User Interface 7
 2.2 The Simulation Builder 10
 2.3 The Simulation 18
Technical Solution
 3.1 Implementation Using UnityEngine 25
 3.2 Complex Programming Index 26
 3.3 Source Code 27
 3.4 Graphical User Interface 69
Testing
 4.0 Introduction 72
 4.1 The Simulation Builder 72
 4.2 Saving And loading 74
 4.3 Camera Management 75
 4.4 Running A Simulation 77
 4.5 The Graphing System 77
Evaluation
 5.1 Achieved Objectives 79
 5.2 Areas to Improve 82
 5.3 Conclusion 83

Appendix A 84
Appendix B 85

2 Alex Bury

Section 1 - Analysis

1.1 Background to project

In physics classes I noted the use of outdated and unreliable simulation software for virtual demonstrations
used by the teachers to present new ideas to students. Often, the physics simulations are tedious for the
teacher to navigate and are lacking in features so have to be supported by other means such as graphs
sketched by the teacher.

I plan to create a user-friendly solution which is appropriate for the simplest and the most complicated of
demonstrations by designing an intuitive and simple user interface system and enabling the teachers to use
the software to bounce ideas back and forth from the students. I plan to implement this in such a way so
that the program is very versatile in its abilities and to ensure that this versatility doesn’t detract from the
intuitive design and easy to understand nature.

I’d like to include a ‘Simulation Builder’ to allow teachers to construct their own simulation and save it to
ensure that the simulation is entirely in context with their lesson and allow teachers to pick and choose
which elements of the simulation (for example, Velocity of an object) they want to be displayed on a graph.

The target audience for my solution is teachers who would use the software to demonstrate principles to
GCSE and A-Level students during lessons on a projector screen attached to a desktop computer running
Windows 7-10. I will have to ensure that my solution is appropriate so that all text is readable on a 2 m
diagonal screen from the back of a large physics laboratory.

1.2 Current system

Some of the physics teachers use the PhET simulations
published for free by the University of Colorado online
however many of them are outdated and rely on an old
and unstable versions of adobe shockwave and flash.
Additionally, the versatility of the programs is limited as
they are designed to demonstrate just one task, and
most of them are in 2D which limits the effectiveness of
the demonstration. An example of this is ‘The Ramp’
simulation to the right. In this user is able to apply force
on an object to push it up and down a slope, using
different preset masses (eg: Piano, Fridge) and can
observe the different associated factors about moving
the object on graphs. The ‘More Features’ tab, as
pictured to the right, adds more control over the
simulation and this is something I’d like to include in my
own simulation to allow the more complex factors to be
ignored when teachers are explaining new ideas to
younger/lesser ability students who would be otherwise
confused by all the different aspects observed in this
‘advanced’ mode.

3 Alex Bury

Other simulations such as the ones on myPhysicsLab online offer another source for teachers to demonstrate
ideas using technology. For example, the ‘Newton’s Cradle’ simulation as pictured below is an example of a
detailed solution but there are a couple of areas which I think could be improved. One of these areas is ease
of use, as I found it was difficult to make the simulation behave in such a way I intended. For example, If I
wanted to ‘grab’ the ball on the end to hold the ball and release it by my own accord, I cannot because I can
only apply a limited amount of force to one ball at a time. This limits the usability of the program as you
cannot reset the momentum of the balls to 0. The second area I believe could be improved is the
Implementation of the graphs. Initially it is difficult to understand what the graphs are and what they’re
trying to demonstrate which means
teachers would have to explain them
to students, using valuable lesson
time whereas if they were intuitive
and easy to understand, the students
would be able to grasp the idea of the
simulation relatively quickly.

Another thing to mention is that the
simulations on myPhysicsLab are
generally all web browser based and
don’t require anything to be
downloaded by the user. Although
this is advantageous as the user
doesn’t have to have anything stored
on their local machine and it makes
the software more portable, it means that the program has to continually mantained and updated to
function correctly with all internet browsers, so I will not be taking this approach for my solution.

1.3 End-User Interveiw

Mr Mumford is the head of department for Physics at Clitheroe Royal Grammar School and has experience
using simulatons to present ideas to students aged 11-18. He kindly agreed to an interveiw where I asked
the following questions:

Q: What is the most difficult aspect of mechanics to demonstrate to students?

A: “Simple Harmonic Motion I find is one of the more difficult ones to demonstrate, however circular
motion is certainly the most difficult to demostrate to students as I haven’t to this day found a robust
simulation which demonstrates the ideas of circular motion in respect to a car doing a vertical loop-
the-loop.”

Q: What’s the most fustrating aspect of the simulations you use to aid your teaching?

A: “Relating them back to the lesson as the flexibility is often limited.”

Q: If the simulations were easier to use and presented ideas more clearly, would you use them more
often?

A: “Yes, certainly.”

Q: What is the most highly desired feature of a physics simulation from your perspective?

A: “The ability for the students to visualise abstract ideas, because sometimes I think that my students
find it difficult to relate the ideas from the simulation back to the ideas in the textbook.”

4 Alex Bury

1.4 Prototyping

I created a simple trebochet simulation in a couple of hours as a prototype as pictured below. This simulation
involves setting the torque on a motor which swings the trebochet arm and the 3 components of the
projectile’s velocity is given in real time as it flys through the air.

I presented this to Mr Mumford and he gave the following feedback:

• The displacement of the projectile needs to be listed.

• You should be able to change the mass of the counterweight on the trebochet rather than the torque
of the motor to allow for further calculations about transfer of energy.

• The program should be more intuitive as its difficult to know how to work it without knowing how to
before hand.

In addition to this feedback, I’d like to include different camera angles, a 2D mode and the ability to plot the
factors on graphs in real time.

1.5 Data Volumetrics

The prototype program I made has a filesize of 41MB. This project only has 1 scene, very few assets and is
very simple overall. However, the final solution will contian many more scripts, assets and textures across
multiple scenes, potentially with the ability to save scenes as listed in my secondary objectives. This means
that the filesize will likely be much greater than 41MB. To get an Idea for the scale of this, I compiled the
following empty Unity projects:

Program Number Of Scenes Filesize (MB) Increase In Filesize (KB)

1 1 41.3 N/A

2 2 41.4 100

3 3 41.6 200

5 Alex Bury

4 4 41.7 100

5 5 41.8 100

The mean increase in filesize per empty scene is 125KB.

The solution without the ability to save your own scenes (see secondary objectives) would contain 3 scenes
in total. This would be at least 41.6MB, as seen from the table above. With the ability to save scenes, there
could be a total of up to 23 different scenes (Being limited to 20 custom scenes) which would result in a
minimum file size of 44.1MB. Obviously the minimum file size isn’t of much use to predicting the size of the
program, so I considered one of my other unity projects, which is unrelated to the physics simulation.

This other Unity project has 2 scenes, quite a few textures and lots of separate scripts the total compliled
file size is approximately 51.03MB with 13.52MB of data stored. This means that there is approximately
10MB of assets, scripts and textures in this program across 2 scenes, alongside 13.5MB of extra data stored
on the device. This allows me to estimate the amount of extra data needed per scene in the final solution to
be around 5MB.

Worst Case Scenario

23 Empty scenes would be 44.1MB. To account for error, I’ll double the amount of extra data stored per
scene, so this would be 10MB per scene. This results in a total of 274.1MB for a compiled and fully featured
solution.

The average modern desktop computer has a hard drive capacity of around 500GB to 1000GB and so the
worst case of my solution would only use around 0.05% of the capacity of a 500GB hard drive.

This means that my solution will be within the acceptible range of file size for use on a desktop computer.

1.6 Implementation

I plan to use Unity3D and C# to create my solution and Unity has built in ridgidbodies which can be applied
to gameobjects and most of the aspects of the simulation that I require such as the velocity of a projectile.
However I will have to derive some of the aspects myself such as displacement of a projectile and the forces
acting on it.

For this I can use s = p1 - p0 (Displacement is the change in distance) F = ma, to calculate the forces acting on
an object.

For calclulating circular motion, I will have to derive more factors using the the following formulas:

➢ Force, F = ma
➢ Linear Velocity v = 2πr

1.7 Objectives

The solution should:

1. Demonstrate the ideas of projectiles and simple harmonic motion through a single solution with the
versitility to observe any of displacement, velocity, acceleration and force while the simulation is
running.

a. You should be able to turn off the irrelevent factors of the simulation (eg: only show the
velocities of a projectile, not the acceleration or forces being acted on it).

b. Veiw the corresponding points on graphs of velocity, acceleration, force and displacement
against time.

c. Graphs should be drawn in real time as the simulation runs.

6 Alex Bury

2. Be a versatile solution which is easily understood and is within context of the A-Level and GCSE
physics courses.

a. Ensure the simulation remains within the scope of the A-Level course so only includes relevant
factors including Displacement, velocity, acceleration and force all given as vectors.

b. Ensure that the scenes observe the laws of physics very similar to that in real life.
3. Be easy for teachers to use and present to a class.

a. The teacher should be able to load preset simulations to show their students.
b. The program should be readable on a 2 m diagonal screen from the back of a large physics

laboratory.
4. Be able to plot graphs relating to velocity, acceleration, force and displacement against time.
5. Be a reliable and optimised solution which runs on a Windows 7+ classroom-level computer.
6. Including a ‘Simulation Builder’ which enables teachers to construct their own simulations to be more

relevent to their lessons, and the ability to save this as a scene to the local machine.
a. The teacher should be able to add structre elements and projectiles
b. They should be able to connect these together using specified connection points
c. They should be able to delete placed objects.
d. The teacher should be able to add pivots, split joints and anchors to structural components

7 Alex Bury

Section 2 - Design

2.1 Graphical User Interface

2.1.1 In-Simulation Controls:

The simulation part of the program will consist of a user interface of a similar stlyle I used in the prototype except
with significantly more detail and controls and will follow a similar layout to the model detailed in the diagram
below:

During the running of the program, the replay options will be greyed out and the run button will become a stop
button, and when the user is in edit mode, the bar at the bottom of the screen will change to a toolbox with the
placeable objects which can be instantiated into the scene, and the graphs attributes can be altered.

2.1.2 Loading and Saving

The Loading and saving windows will have
separate windows which will look similar to the
models on the right. The files will be presented
in the file browser as buttons, and when
clicked their name will autofill into the file
name input box. This allows easy loading and
saving as the user does not have to type each
name individually.

Each save instance will be saved as a JSON text
file with the .phys extension in the AppData
folder on the computer. This process requires
the abstraction and translation into a
serialisable class of the main assembly since
references to GameObjects cannot be stored in
JSON format in Unity. This means that only the placeable objects, their node’s positions and the node’s types have to
be stored as the MainAssembly can be reconstructed from this information only by instantiating the relevent prefab

8 Alex Bury

(see technical solution documentation for more detail on prefabs), moving the nodes to their correct positions and
setting their node type temporarily. Then the program can iterate through the list of nodes and if any node shares
the same position as another, then they are connected and their node types can be set using the temp node type.
This works in effectively the same way the user would manually construct a simulation except completed by the
program itself.

This system consists of 3 classes. These classes are all standard C# classes (not of type MonoBehaviour, which is
seldom required in Unity, as the JSON system cannot be placed within one). The first contains procedures which
serialise and deserialise the main assembly into and from the abstraction of the class, the second contains an array
of up to 100 placeable objects (a list would be preferred but lists cannot be serialised in Unity) and the third contains
the two node positions, the two node types and the prefab of the respective object. This is shown in the UML
diagram below:

2.1 Fundamental Algorithms

Loading and Saving

The saving and loading functionality will consist of a script attached to the parent object of each corresponding file
browser window. To implement this the program will create a folder in the user’s documents and all of the
simulation assembilies will be stored here, and the program discover and order any files in this specific file location.
Any unexpected files will be ignored if they do not have the .phys extension and not detected by the program. In the
event of an error in loading or saving a program, an error message will be displayed with the option to cancel or try
again.

 The systems will make use of the following algorithms:

9 Alex Bury

SaveLoadManagement

 procedure SaveAssembly(MainAssemblyObject : GameObject, fileName : String)
 AssemblyData <- ConvertToSerializableClass(MainAssemblyObject)
 Jsontxt <- Json.ToJson(AssemblyData)
 stream <- StreamWriter(Application.persistentDataPath & "/" & fileName & ".phys")
 stream.Write(Jsontxt)
 stream.Close()
 End

 Procedure LoadAssembly(fileName : String) : GameObject
 stream <- StreamReader(Application.persistentDataPath & "/" & fileName & ".phys")
 JsonTxt <- stream.ReadToEnd()
 stream.Close()
 AssemblyData <- Json.FromJson(JsonTxt)
 NewMainAssembly : GameObject <- ConvertFromSerializableClass(AssemblyData)
 Return newMainAssembly
 End

 Procedure ConvertToSerializableClass(Assy : GameObject) : AssemblyData
 For Each assyEle In AssyElements
 If assyEle.name <- "Structure Element(Clone)" Then
 AssyElemnt.prefab <- GameObject.Load(Structure Element)
 ElseIf assyEle.name <- "Projectile(Clone)" Then
 AssyElemnt.prefab <- GameObject.Load(Projectile)
 Else
 End If
 AssyElemnt.Node1Type <- GetNodeType(NodeObj01)
 AssyElemnt.Node2Type <- GetNodeType(NodeObj02)
 AssyElemnt.Node1Position <- NodeConnectionScript.NodeObj01.transform.position
 AssyElemnt.Node2Position <- NodeConnectionScript.NodeObj02.transform.position
 MainAssy.AssemblyElements(i) <- AssyElemnt
 i <- i + 1
 EndFor
 Return MainAssy
 End

 Procedure ConvertFromSerializableClass(mainAssy : AssemblyData) : GameObject
 newMainAssembly <- GameObject.Instantiate(MainAssembly)
 For Each AssyElemnt In mainAssy.AssemblyElements

10 Alex Bury

 newAssyEle <- GameObject.Instantiate(AssyElemnt.prefab)
 newAssyEle.transform.parent <- newMainAssembly.transform
 NodeObj01.transform.position <- AssyElemnt.Node1Position
 NodeObj02.transform.position <- AssyElemnt.Node2Position
 setTempNodeType(NCS.NodeObj01, AssyElemnt.Node1Type)
 setTempNodeType(NCS.NodeObj02, AssyElemnt.Node2Type)
 AssemblyManagementScript.AddSceneObject(newAssyEle)
 objectScript.UpdateLocalPosition()
 EndFor
 Return newMainAssembly
 End

2.2 The Simulation Builder

2.2.1 The Building System Overview

The solution will consist of an ‘Edit Mode’ where the user can create, modify and
delete scenes using a modular construction system based around placeable objects
which have different purposes. This is detailed in the following section; ‘2.2 Placeable
Objects’.

The system will rely on the different objects connecting to each other through ‘nodes’
which are highlighted by the mouse flying over them. Each object will have nodes in
preset locations and it is at these points that they will snap together, and the user will
have to click and drag the nodes to scale the object or move it around, depending on
its properties. This enables the user to ensure that the simulation is very relevent to the idea that they are teaching,
and is a fairly straightforward concept to grasp.

After constructing a simulation, the user will be able to save the file if they wish, to preserve it for later.

2.2.2 Placeable Objects

The Following table details the objects available to the user via a toolbox displayed while in edit mode.

Each of the objects listed will behave differently if they are interacted with, however the node system is the

fundamental idea behind all the connections made between different objects. The ‘Main Assembly’ is the parent

Object Attributes / unit Appearance Description

Structure
Element

- -

A ridgid bar which has
nodes at either end
used for building
structures and supports

Projectile Veloctiy / ms-1
Acceleration / ms-2
Displacement / m
Force / N

An object which can be
launched by a system

An example of what a node may look
like when a mouse is over it.

11 Alex Bury

object of all the individual objects and the main script for the node system is attached to this object. How the object

deals with one of its nodes being moved is entirely down to a script attached to itself, and is independent of the

node system. This is shown in the entity relationship diagram in Section 3 Technical Solution 3.1.

About The Attributes

Velocity, acceleration, displacement and force will all be given as vectors and one component of these attributes will
be able to be plotted on the graph as these will vary throughout the simulation.

2.2.3 Types Of Nodes

The user will be able to click any node in the scene to change it’s type. The following table contains the types of
nodes, their purposes and their limitations.

2.2.4 Camera Management

In edit mode, the user should be able to move the camera around in 3D space to allow for easy construction. The
camera will be able to snap to a single plane which will limit free movement of any object when moving it around
from this angle, as the original distance of each point away from the camera will be retained as it is dragged around
unless it snaps to another node. In addition to this, the user will also be able to set the camera to free-veiw where
the assembly can be seen from an 45 degree angle. The following table shows the keybindings and their functions
whilst in edit mode:

Type Function Keybindings

Snap to
veiw

Top-Down view 7

Front view 8

Rear view 2

Left view 4

Right view 6

Free-view 5

2.2 Fundamental Algorithms

Type Colour Description Limitations

Standard Blue The standard node can be dragged around the
world using the curser while in build mode which
allows the movement of placeable objects. Any
connections between these types of nodes are
ridgid. This is the default node type that elements
have when spawned into the scene.

None

Pivot Yellow The pivot acts as a link between two
subassembilies, on one of which a pivot
component is attached and the other
subassembly is referenced within this
component.

Nodes can only be made into pivots if
they are at a connection between 2
nodes.

Split
Joint

Red The split joints acts as a link between two
subassembilies, on one of which a fixed joint
component is attached and the other
subassembly is referenced within this
component.

Nodes can only be made into split joints
if they are at a connection between 2
nodes.

Anchor Black The anchor is a node to lock the enitre
subassembly into a fixed position in 3D space,
where no amount of force can move them.

The Anchor can be placed on any node
with any number of connections.

12 Alex Bury

Main Assembly Algorithm

The aim of this algorithm is to make any node clicked on in the scene follow the curser, and make it snap to any

other node in the scene, providing that the other node is not part of the same object. This script is named

“userInputScript” and is attached to the “Main Assembly” object in the scene.

GetEditMode()
 return EditMode

Start()
 EditMode <- true
 CheckCurserPosition()

UpdateNodeList(node)
 Node.Add(node)
 MouseDownFlag.Add(false)
 MouseOverFlag.Add(false)

UpdateProjectileList(projec)
 Projectile.Add(projec)

Coroutine CheckCurserPosition()
 while EditMode = true and Moving = false
 for i <- 0 to i = Node.Count - 1 do
 MousePos <- Input.mousePosition
 NodePos <- Camera.WorldToScreenPoint(Node[i].position)
 intersectionRange <- RangeMultiplier/(Camera.WorldToScreenPoint(Node[i].position).z)
 if (NodePos.x - intersectionRange) < (MousePos.x) and (MousePos.x) <

(NodePos.x + intersectionRange) and (NodePos.y - intersectionRange) <
(MousePos.y) and (MousePos.y) < (NodePos.y + intersectionRange) then

 for y <- 0 to y = MouseDownFlag.Count - 1 do
 if MouseDownFlag[y] = false then
 MouseDownFlag[i] <- true
 Moving <- true
 MouseDownOnNode(Node[i], i)
 halt procedure
 else
 endif
 y = y + 1
 endfor
 else
 Moving <- false
 MouseDownFlag[i] <- false
 if MouseOverFlag[i] = false then
 MouseOverFlag[i] <= true
 MouseOverNode(Node[i], i)
 elseif
 endif
 endif
 else
 MouseOverFlag[i] <- false
 if MouseDownFlag[i] = false then
 Node[i].SetActive(false)
 endif
 i = i + 1
 endfor
 endwhile
 halt procedure

MouseDownOnNode(node, flagPos)
 FollowCurser(node,flagPos)

MouseOverNode(node, flagPos)
 node.SetActive(true)

coroutine FollowCurser(node, flagPos)
 StructureElement <- node.transform.parent.parent.gameObject

13 Alex Bury

 InitalObjectPosition <- StructureElement.position
 structEleScript <- StructureElement.GetComponent(StructEleScript)
 initialPosRelToCam <- Camera.WorldToScreenPoint(StructureElement.position).z
 InitialObjectLength <- StructureElement.transform.localScale.z
 x <- 0
 for z <- 0 to z = Node.Count - 1 do
 if node.parent <> Node[z].parent
 OtherNodes.Add(Node[z])
 snapFlag.Add(false)
 z = z + 1
 endfor
 while MouseDownFlag[flagPos] = true and EditMode = true
 for a <- 0 to a = OtherNodes.Count - 1 then
 NodePos <- Camera.WorldToScreenPoint(node.transform.position)
 OtherNodePos <- Camera.WorldToScreenPoint(OtherNodes[a].position)
 mousePos.x <- Input.mousePosition.x
 mousePos.y <- Input.mousePosition.y
 intersectionRange <- RangeMultiplier / OtherNodePos.z
 if (OtherNodePos.x - intersectionRange) < mousePos.x and mousePos.x <

(OtherNodePos.x + intersectionRange) and (OtherNodePos.y -intersectionRange)
< mousePos.y and mousePos.y < (OtherNodePos.y + intersectionRange) then

 if snapFlag[a] = false then
 newPosition <- OtherNodes[a].position
 node.position <- newPosition
 snapFlag[a] <- true
 x <- a
 else
 endif
 else
 snapFlag[a] <- false
 if snapFlag[x] = false then
 node.position <- Camera.ScreenToWorldPoint(mousePos.x, mousePos.y,
 initialPosRelToCam)
 else
 endif
 endif
 a = a + 1
 endfor
 structEleScript.UpdateLocalPosition()
 if Input.GetMouseButtonUp(0) then
 MouseDownFlag[flagPos] <- false
 Halt
 else
 end
 endwhile
 Moving <- false
 OtherNodes.Clear()
 CheckCurserPosition()

Variables And Lists

Name Type Contents

Node List of game objects All nodes in the scene

Projectile List of game objects All projectiles in the scene

MouseDownFlag List of Boolean Mouse is down on a node

MouseOverFlag List of Boolean Mouse is over a node

EditMode Boolean The program is in edit mode

Moving Boolean The user is moving a node

MousePos 2D Vector The position of the mouse on the screen

NodePos 2D Vector The position of the current node on the screen

intersectionRange Integer A radius around a given point in 2D

RangeMultiple Float The multiplier of the radius

StructureElement Game object The placeable object in the scene

InitialObjectPosition 3D Vector Initial Object Position

structEleScript Script The script attached to the placeable object

14 Alex Bury

initialPosRelToCam Float The distance the object is away from the camera

InitialObjectLength Float The scale of the object before it was moved

x Integer The location of the clicked object in the list

SnapFlag List of boolean The node, a, has been snapped to

node Game object The node that is following the curser

flagPos Integer The position of the node in the array

OtherNodes List of Game Objects All the nodes in the scene which can be snapped
to by the current node

OtherNodePos Game object The node that the current node may snap to

newPosition 3D vector The position of the other node when snapping

Procedures and Coroutines

Type Name Purpose Input Parameters Return

Procedure Start Initiailises the Script - -

GetEditMode Gets the edit mode - EditMode

UpdateNodeList Updates the list of
nodes with new
nodes

node (Game Object) -

MouseDownOnNode Is called once when
a node is clicked

node (Game Object)
flagPos (Integer)

-

MouseOverNode Is called once when
the mouse moved
over the node

node (Game Object)
flagPos (Integer)

-

Coroutine CheckCurserPosition Checks if the mouse
is over a node in the
scene, and if it is
being dragged

- -

FollowCurser Makes the node in
the scene follow the
curser

node (Game Object)
flagPos (Integer)

-

15 Alex Bury

Structure Element Algorithm

This algorithm makes the rectangle always meet the two nodes at either end. When one node is moved, the other
stays in the same place and the rectangle meets both at either end. The image below shows the diagram used to
determine the angles needed for the rotation of rectangle in 3D space.

Start()

 mainAssemblyObject <- FindGameObject("MainAssembly")
 userInputScript <- mainAssemblyObject.GetComponent(UserInputScript)
 userInputScript.UpdateNodeList(NodeObj01)
 userInputScript.UpdateNodeList(NodeObj02)
 Rectangle <- FindLocalGameObject("Rectangle")

UpdateLocalPosition()
 NodePoint01 <- NodeObj01.position
 NodePoint02 <- NodeObj02.position
 RectangleScale <- NodeObj01.Scale.x

 Rectangle.position <- (NodePoint02.x+NodePoint01.x)/2,
 (NodePoint02.y + NodePoint01.y)/2,(NodePoint02.z + NodePoint01.z)/2)

 if (NodePoint01.x < NodePoint02.x) OR (NodePoint01.x = NodePoint02.x) then

 rotation <- (Arctan((NodePoint01.y - NodePoint02.y) /
 Sqrt((NodePoint01.z - NodePoint02.z)^2) + (NodePoint02.x - NodePoint01.x)^2)),
 90 + Arctan((NodePoint01.z - NodePoint02.z) / (NodePoint02.x - NodePoint01.x)), 0)
 else
 rotation <- (-Arctan((NodePoint01.y - NodePoint02.y) /
 Sqrt((NodePoint01.z - NodePoint02.z)^2) + (NodePoint02.x - NodePoint01.x)^2)),
 90 + Arctan((NodePoint01.z - NodePoint02.z) / (NodePoint02.x - NodePoint01.x)), 0)
 endif
 Rectangle.rotation <- Quaternion(rotation)
 Rectangle.localScale <- (RectangleScale, RectangleScale, Sqrt((NodePoint02.x - NodePoint01.x)^2 +
 (NodePoint01.y - NodePoint02.y)^2 + (NodePoint01.z - NodePoint02.z)^2)))

Notes:

- The function Start() is called at the instantiaion of an instance of an object, wether it be during runtime or on
initial startup.

- UpdateLocalPosition() is called from the MainAssemblyAlgorithm while the mouse is clicked down on one of
the object’s nodes.

- UpdateNodeList() is a function in the MainAssemblyAlgorithm which keeps a list of all the nodes in the
scene.

16 Alex Bury

Projectile Algorithm

This algorithm needs to calculate the Acceleration (using change in velocity devided by time), displacement and
resultant force (Using Newton’s second law of motion, F=ma). The velocity is a native attribute to any gameobject
with a ridgidbody attached to it and so it is not required to caluclate this. OnRun() will be called when the “Run”
button is clicked by the user.
Simulate()
 initialDisplacement <- this.location
GetAcceleration()
 initialVelocity <- this.velocity
 wait 1ms
 accn <- (this.velocity - initialVelocity) / 0.001
 return accn

GetDisplacement()
 dis <- initialDisplacement - this.location
 return dis

GetForce()
 force <- GetAcceleration() * this.mass
FixedUpdate()
 If simulating = True Then
 Displacement <- Vector3(Rectangle.transform.position.x - InitialPosition.x,
Rectangle.transform.position.y - InitialPosition.y, Rectangle.transform.position.z - InitialPosition.z)
 Acceleration <- (GetVelocityAtPoint(Rectangle.transform.position) - Velocity) / DeltaTime
 Velocity <- GetVelocityAtPoint(Rectangle.transform.position)
 Force <- (mass * Acceleration)

 If ShowOnReadouts = True Then
 SceneManagementAlgorithm.SetDisplacementText(Displacement)
 SceneManagementAlgorithm.SetVelocityText(Velocity)
 SceneManagementAlgorithm.SetAccelerationText(Acceleration)
 SceneManagementAlgorithm.SetForceText(Force)
 End If
 End If
End
procedure UpdateLocalPosition()
 If NodeMoved(NodeObj01) = True Then
 If NCS.getNodeObjConnection(2).Count > 0 Then
 AssemblyManagementScript.RemoveConnections(NodeObj02, NCS.getNodeObjConnection(2)(0), NCS)
 End If
 Rectangle.transform.position <- 3DVector(NodeObj01.transform.position.x,
NodeObj01.transform.position.y, NodeObj01.transform.position.z + 0.25F)
 NodeObj02.transform.position <- 3DVector(NodeObj01.transform.position.x,
NodeObj01.transform.position.y, NodeObj01.transform.position.z + 0.5F)
 ElseIf NodeMoved(NodeObj02) = True Then
 If NCS.getNodeObjConnection(1).Count > 0 Then
 AssemblyManagementScript.RemoveConnections(NodeObj01, NCS.getNodeObjConnection(1)(0), NCS)
 End If
 Rectangle.transform.position <- 3DVector(NodeObj02.transform.position.x,
NodeObj02.transform.position.y, NodeObj02.transform.position.z - 0.25F)
 NodeObj01.transform.position <- 3DVector(NodeObj02.transform.position.x,
NodeObj02.transform.position.y, NodeObj02.transform.position.z - 0.5F)
 Else
 End If

 Node1ExpectedPosition <- NodeObj01.transform.position
 Node2ExpectedPosition <- NodeObj02.transform.position
End

Notes:

- The function Simulate() is called upon the ‘start’ button being clicked.
- UpdateLocalPosition() is called from the MainAssemblyAlgorithm while the mouse is clicked down on one of

the object’s nodes.
- FixedUpdate() is called once per frame

17 Alex Bury

NodeConnection Algorithm

This algorithm manages the two nodes attached to any placeable object and exists as a component alongside the
Projectile/ Structure element algorithms as this is not object specific.
 Procedure UpdateNodeType(node : GameObject,type : String)
 If node = NodeObj01 Then
 oldType <- Node1Type
 If type = "Anchor" Then
 If type <> Node1Type Then
 SetNodeType(type, node, oldType)
 ForEach otherObject In NodeObj01Connection
 NodeConnectionScript.SetNodeType(type, otherObject, oldType)
 EndFor
 Else
 SetNodeType("Standard", node, oldType)

 ForEach otherObject In NodeObj01Connection
 NodeConnectionScript.SetNodeType("Standard", otherObject, oldType)
 EndFor
 End If
 ElseIf NodeObj01Connection.Count = 1 Then
 If type <> Node1Type Then
 SetNodeType(type, node, oldType)
 NodeConnectionScript.SetNodeType(type, NodeObj01Connection(0), oldType)
 Node1AssocitatedObject <- NodeObj01Connection(0)
 Else
 SetNodeType("Standard", node, oldType)
 NodeConnectionScript.SetNodeType("Standard", NodeObj01Connection(0), oldType)
 Node1AssocitatedObject <- Nothing
 End If
 Else
 If type <> "Standard" And type <> "Anchor" Then
 NotifyUser("Error: Pivots and split joints must only be between 2 nodes. Try
Reconnecting them.")
 End If
 End If
 ElseIf node = NodeObj02 Then
 oldType <- Node2Type
 If type = "Anchor" Then
 If type <> Node2Type Then
 SetNodeType(type, node, oldType)
 ForEach otherObject In NodeObj02Connection
 NodeConnectionScript.SetNodeType(type, otherObject, oldType)
 EndFor
 Else
 SetNodeType("Standard", node, oldType)
 ForEach otherObject In NodeObj02Connection
 NodeConnectionScript.SetNodeType("Standard", otherObject, oldType)
 ForEach
 End If
 ElseIf NodeObj02Connection.Count = 1 Then

 If type <> Node2Type Then
 SetNodeType(type, node, oldType)
 NodeConnectionScript.SetNodeType(type, NodeObj02Connection(0), oldType)
 Node2AssocitatedObject <- NodeObj02Connection(0)
 Else
 SetNodeType("Standard", node, oldType)
 NodeConnectionScript.SetNodeType("Standard", NodeObj02Connection(0), oldType)
 Node2AssocitatedObject <- Nothing
 End If
 ElseIf type <> "Standard" And type <> "Anchor" Then
 NotifyUser("Error: Pivots and split joints must only be between 2 nodes. Try Reconnecting
them.")
 End If
 Else
 End If

18 Alex Bury

 End
 Procedure LinearSearch(list : List(GameObject), SearchFor : GameObject) : Integer
 If list.Count <> 0 Then
 For i <- 0 To list.Count - 1
 If list(i) = SearchFor Then
 Return i
 End If
 EndFor
 Else
 Return -1
 End If
 End
 Coroutine UpdateConnection(node : GameObject, ConnectedNode : GameObject, isConnected : Boolean)
 If node = NodeObj01 Then
 If isConnected = True Then
 If (LinearSearch(NodeObj01Connection, ConnectedNode) = -1) And (ConnectedNode <> node)
Then
 NodeObj01Connection.Add(ConnectedNode)
 End If
 Else
 If NodeObj01Connection.Count <> 0 Then
 locationIndex <- LinearSearch(NodeObj01Connection, ConnectedNode)
 If locationIndex <> -1 Then
 NodeObj01Connection.RemoveAt(locationIndex)
 NodeObj01Connection.TrimExcess()
 End If
 End If
 End If
 ElseIf node = NodeObj02 Then
 If isConnected = True Then
 If (LinearSearch(NodeObj02Connection, ConnectedNode) = -1) And (ConnectedNode <> node)
Then
 NodeObj02Connection.Add(ConnectedNode)
 End If
 Else
 If NodeObj02Connection.Count <> 0 Then
 locationIndex <- LinearSearch(NodeObj02Connection, ConnectedNode)
 If locationIndex <> -1 Then
 NodeObj02Connection.RemoveAt(locationIndex)
 NodeObj02Connection.TrimExcess()
 End If
 End If
 End If
 Else
 End If
 End

Notes:

- The procedure UpdateNodeType() is called by the AssemblyManagement algorithm when either a
connection is broken or a node type is set.

- The function LinearSearch() locates a pivot or split joint in a list of 2 element arrays which contain each side
of the pivot/ split joint.

- The procedure UpdateConnection() is called by the AssemblyManagement algorithm when a connection is
made or broken.

2.3 The Simulation

2.3.1 Data Handling

The two elements will consist of the x followed by y values which can be passed from the projectile algorithm to the
graphing algorithm and plotted on a graph. The x values will be populated with velocity, acceleration, force or
displacement and the y values will be populated with the time elapsed from the start of the simulation to the

19 Alex Bury

moment that the point was recorded. When the scene is reset, the graphs will also reset and the lists will be cleared.
Data will stop being recorded once the simulation has been stopped by the user pressing the ‘stop’ button.

2.3.2 Graphing System

Each graph will have a settings menu where the y
values can be set when in edit mode. The graphs
should populate themselves with points and scale
automatically so that all the points lie within view
on the graph, and should automatically update the
graph title which corresponds to the attribute
being plotted. This will look something like the
graph to the right. The graph system should also
minimise the amount of instantiation calls for
plotting points and so should instantiate points
initially then as the graph translates to the left, the
points that lie outside of the graphing window
should be recycled by translating them to a new
position at the front of the graph. This is
effectively a circular queue where the front of the queue is moved to the back when the front lies outside of veiw.

2.3.3 Camera Management

The camera in the simulation will be positioned similarly to the camera in the protoype I made and the system
should ensure that both the initial structure and any projectiles lie comfortably within the frame of the camera. This
means that the camera will track towards and away from the simulation plane, keeping all objects in the simulation
in frame whilst doing so. This will be achived by finding the leftmost and rightmost nodes or projectiles then finding
the midpoint between them and. To ensure that the camera movement does not become nauseating or confusing,
the movement should be damped so it is smooth and gentle. This will be achived by applying a thrust backwards and
forwards to the camera whenever any of the objects in the scene are out of range, or are clustered towards the
centre of the field of view. The image below shows how the position of the camera relative to the right and leftmost
points was determined.

20 Alex Bury

2.3 Fundamental Algorithms

Simulation Manager Algorithm

This algorithm manages the running of the simulation. It will exist in one instance for the entire execution of the
program and therefore stores any globally important data.

 Procedure replaceAssembly(old : GameObject) : AssemblyManagementScript
 If currentAssembly <> Nothing Then
 Destroy(old)
 currentAssembly.SetActive(True)
 MainAssembly <- currentAssembly
 MainAssembly.name <- "MainAssembly"
 End If
 Return assemblyManagementScript
 End

 Procedure EditMode()
 If simulating <> True Then
 editing <- True
 StartCoroutine(WaitForNextFrame(AMS, False))
 Else
 NotifyUser("You must stop the simulation before you can go into edit mode.")
 End If
 End

 coroutine WaitForNextFrame(AMS : AssemblyManagementScript,isResetting : Boolean)
 event.toggleEditMode()
 AssemblyManagementScript.OnEditMode()
 If isResetting = True Then
 SimulationMode()
 End If
 End

 Procedure SimulationMode()
 event.toggleSimulationMode()
 editing <- False
 EditPanel.SetActive(False)
 SimulationPanel.SetActive(True)
 currentAssembly <- Instantiate(MainAssembly)
 currentAssembly.SetActive(False)
 assemblyManagementScript.OnSimulationMode()
 End

 Procedure instantiateObject(placeableObject : GameObject)
 assemblyManagementScript.SetEditMode(False)
 instantiatedObject <- Instantiate(placeableObject)
 NodeConnectionScript.ClearAllLists()
 NodeConnectionScript.InitialiseNodeTypes()
 instantiatedObject.transform.parent <- MainAssembly.transform
 StartCoroutine(assemblyManagementScript.SimpleFollowCurser(instantiatedObject))
 assemblyManagementScript.OnEditMode()
 assemblyManagementScript.AddSceneObject(instantiatedObject)
 End

 Procedure ChangeMode(calledFrom : GameObject)

 Case options(Index).text
 Case "Build"
 mode = "Build"
 Case "Select Pivot"
 mode = "Pivot"
 Case "Select Anchor"
 mode = "Anchor"
 Case "Select Split Joint"
 mode = "SplitJoint"
 Case "Delete"

21 Alex Bury

 mode = "Delete"
 Case Else
 Log("Fatal Error: Mode not found")
 End Case
 End

Notes:

- The procedure replaceAssembly() is called when switching into edit mode from simulation mode as the old
assembly is made up of subassembilies which cannot be modified.

- The procedure EditMode() is called upon the user switching into edit mode.
- The procedure SimulationMode() is called upon the user switching to simulation mode.
- The procedure InstantiateObject() is called upon the user clicking a button to add a new placeable object.
- The procedure ChangeMode() is called upon the user changing the value of the mode drop down in edit

mode.

Camera Management Algorithm
The purpose of this algorithm is to ensure that all the objects in the scene are within the horizontal frame of the
camera horizontally.

Start()
 mainAssemblyObject <- FindGameObject("MainAssembly")
 userInputScript <- mainAssemblyObject.GetComponent(UserInputScript)
 borderWidth <- 2
 FOV <- camera.FieldOfView
 smoothTime <- 0.5

CalculateTargetPosition()
 targetX <- (minX + maxX) / 2
 targetY <- (minY + maxY) / 2
 targetZ <- (((maxX - minX) / 2) + borderWidth) * cos(FOV)
 targetPosition <- 3Dvector(targetX, targetY, targetZ)
return targetPosition

GetFringeNodes()
 for i <- 0 to userInputScript.Node.Length - 1 do
 if userInputScript.Node[i].position.x > maxX then
 maxX <- userInputScript.Node[i].position.x
 else
 if userInputScript.Node[i].position.x < minX then
 minX <- userInputScript.Node[i].position.x
 else
 endif
 endif
 if userInputScript.Node[i].position.y > maxY then
 maxY <- userInputScript.Node[i].position.y
 else
 if userInputScript.Node[i].position.y < minY then
 minY <- userInputScript.Node[i].position.y
 else
 endif
 endif
 endfor
 for i <- 0 to userInputScript.projectile.length - 1 do
 if userInputScript.projectile[i].position.x > maxX then
 maxX <- userInputScript.projectile[i].position.x
 else
 if userInputScript.projectile[i].position.x < minX then
 minX <- userInputScript.projectile[i].position.x
 else
 endif
 endif
 if userInputScript.projectile[i].position.y > maxY then
 maxY <- userInputScript.projectile[i].position.y
 else

22 Alex Bury

 if userInputScript.projectile[i].position.y < minY then
 minY <- userInputScript.projectile[i].position.y
 else
 endif
 endif
 endfor

coroutine AutoCamera()
 GetFringeNodes()
 newPosition <- CalculateTargetPosition()
 camera.position <- translateToTarget.Damp(camera.position, newPosition, (0,0,0), smoothTime)

Notes:

- The procedure Start() is called at the beginning of the running of the program.
- The procedure CalculateTargetPosition() is called if the camera needs to be moved to fit all the scene objects

to within the frame of the camera and calculates where the camera needs to be to do so.
- The procedure GetFringeNodes() gets the outermost nodes in the scene which will be the furthest object

that the camera must have in its frame.
- The coroutine AutoCamera() moves the camera smoothly to a position where all the nodes lie within the

frame of the camera.

Graph Management Algorithm

This algorithm manages the graph by plotting the points, recycling points, scaling the graph and moving horizontally.

 Procedure PlotPoint(Value : float, time : float)
 If (time * GraphScaleX) / GraphSizeX > 1 Then
 change <- ((time * GraphScaleX) / GraphSizeX) * GraphScaleX
 Difference <- Difference + change
 BackgroundRect.sizeDelta <- New Vector2(Difference, 0)
 BackgroundRect.transform.Translate(2DVector((-change / 2), 0))
 GraphSizeX <- BackgroundRect.width
 RedundantPoint <- RedundantPoint.Concat(LocateRedundantPoints(time * GraphScaleX)).ToList()
 End If
 If Math.Abs((Value * GraphScaleY) / (GraphSizeY / 2)) > 1 Then
 GraphScaleY <- ScaleVertically(GraphScaleY * (1 / Mathf.Abs((Value * GraphScaleY) /
(GraphSizeY / 2))), GraphScaleY)
 End If
 If RedundantPoint.Count <> 0 Then
 NewPoint <- RedundantPoint(0)
 RedundantPoint.Remove(NewPoint)
 RedundantPoint.TrimExcess()
 Else
 NewPoint <- Instantiate(PlottingPointPrefab)
 NewPoint.transform.SetParent(graph background)
 Point.Add(NewPoint)
 End If
 PointTransform <- NewPoint.GetComponent(Transform)()
 Position <- New Vector2((time * GraphScaleX), (Value * GraphScaleY))
 PointTransform.anchoredPosition <- Position
 End

 Procedure ScaleVertically(newScale : float, currentScale : float) : float
 For i <- 0 To Point.Count - 1
 PntTrn <- Point(i).GetComponent(Transform)()
 PntTrn.anchoredPosition = 2DVector(PntTrn.anchoredPosition.x, (PntTrn.anchoredPosition.y /
currentScale) * newScale)
 EndFor
 Return newScale
 End

 Procedure LocateRedundantPoints(currentTime : float) : List(Of GameObject)
 RP : List(GameObject) = New List(GameObject)
 CP : List(GameObject) = New Point
 For i <- 0 To Point.Count - 1

23 Alex Bury

 If RedundantPoint.Contains(Point(i)) Then
 CP.Remove(Point(i))
 End If
 EndFor
 CP.TrimExcess()
 For i <- 0 To CP.Count - 1
 RT <- Point(i).GetComponent(Of RectTransform)()
 If RT.anchoredPosition.x < (currentTime - InitialBackgroundSize.x) Then
 RP.Add(CP(i))
 End If
 EndFor
 Return RP
 End

 Coroutine PlotPoints()
 StartTime <- Time.fixedTime
 If ProjScript <> Nothing Then
 While Simulating = True
 Case ProjAttribute
 Case "Displacement"
 PlotPoint(ProjScript.GetDisplacement(Axis), Time.fixedTime - StartTime)
 Case "Velocity"
 PlotPoint(ProjScript.GetVelocity(Axis), Time.fixedTime - StartTime)
 Case "Acceleration"
 PlotPoint(ProjScript.GetAcceleration(Axis), Time.fixedTime - StartTime)
 Case "Force"
 PlotPoint(ProjScript.GetForce(Axis), Time.fixedTime - StartTime)
 Case Else
 Log("Fatal Error: Mode not found")
 End Case
 End While
 Else
 End If
 Title.SetActive(False)
 End

Notes:

- The procedure PlotPoint() is called when a new point needs to be plotted on the graph.
- The procedure ScaleVertically() calculates how much the graph needs to adjust its vertical scale to allow all

points to fit within the viewing window.
- The procedure LocateRedundantPoints() finds all points which lie outside of veiw and so can be recycled by

moving them to the front to avoid expensive instantiate calls.

Projectile Drop Down Algorithm

This algorithm ensures that the dropdowns for the two graphs and the readouts are updated and that they show
which projectile is which using a numbering system which is displayed over each projectile.

 Procedure ShowProjectileNumbers(ProjectilesList : List(GameObject))
 For i <- 0 To ProjectilesList.Count - 1
 If ProjectilesList(i) <> Nothing Then
 Num = Instantiate(ProjectileNumber)
 Num.transform.SetParent(gUIScript.gameObject.transform)
 Num.GetComponent(RectTransform).Position =
MainCamera.WorldToScreenPoint(ProjectilesList(i).transform.GetChild(1).transform.position)
 Num.GetComponentInChildren(Of Text)().text = i.ToString()
 CurrentProjectileNumbers.Add(Num)
 DisplayingNumbers <- True
 End If
 Next
 End

 Procedure OnPointerExit()
 HideProjectileNumbers()
 If ProjectilesList.Count > DD.value Then

24 Alex Bury

 CurrentProjectile <- ProjectilesList(DD.value)
 End If
 UpdateGraphs()
 End
 Procedure OnPointerEnter()
 ProjectilesList.Clear()
 UpdateDropdownOptions()
 End
 Procedure UpdateDropdownOptions()
 DD.ClearOptions()
 ProjectilesList.Clear()
 ProjectileLabel.Clear()
 MainAssembly <- gUIScript.getMainAssembly()
 ProjectilesList <- MainAssembly.GetComponent(AssemblyManagementScript).getProjectileList()
 ShowProjectileNumbers(ProjectilesList)
 For i <- 0 To ProjectilesList.Count - 1
 ProjectileLabel.Add("Projectile " & i.ToString())
 EndFor
 DD.AddOptions(ProjectileLabel)
 DD.RefreshShownValue()
 If ProjectileLabel.Count > 0 Then
 CurrentProjectile <- ProjectilesList(DD.value)
 End If
 End
 Procedure RefreshNumberLocations()
 If DisplayingNumbers = True Then
 HideProjectileNumbers()
 ShowProjectileNumbers(AssemblyManagementScript.getProjectileList())
 End If
 End

 Procedure UpdateGraphs()
 ProjectilesList.Tidy()
 If ProjectilesList.Count <> 0 Then
 If Me.gameObject.transform.parent.name = "GraphingPanel1Settings" Then
 GraphScript = GameObject.Find("/Canvas/GraphingPanel1").GetComponent(GraphScript)
 GraphScript.SetProjectile(CurrentProjectile)
 ElseIf this.gameObject.parent.name = "GraphingPanel2Settings" Then
 GraphScript = GameObject.Find("/Canvas/GraphingPanel2").GetComponent(Of GraphScript)()
 GraphScript.SetProjectile(CurrentProjectile)
 Else
 For Each proj : GameObject In ProjectilesList

 If proj <> Nothing Then
 PS <- proj.GetComponent(ProjectileScript)()
 PS.showReadouts(False)
 End If
 EndFor

 ProjectileScript <- CurrentProjectile.GetComponent(ProjectileScript)()
 ProjectileScript.showReadouts(True)
 End If
 End If
 End

Notes:

- The procedure ShowProjectileNumbers() places UI boxes with numbers in over each projectile in the scene
to show which one is which.

- The procedure OnPointerExit() is called when the curser leaves the dropdown UI element box.
- The procedure OnPointerEnter() is called when the curser enters the dropdown UI element box.
- The procedure UpdateDropDownOptions() displays each projectile as a listing in the drop down where they

can be selected.
- The procedure UpdateGraphs() forwards which projectile is currently selected to its corresponding graphing

class.

25 Alex Bury

Section 3 - Technical Solution

3.1 Implementation Using UnityEngine

For my program, I have decided to use the 3D graphics engine Unity as it is a powerful and versatile system with
similar to real life physics.

The class structure in Unity is such that GameObjects in the hierarchy act as contianers for components (classes)
such as 3D meshes, box colliders and custom C# scripts. The scripts (classes) attached to each gameobject must be a
class of MonoBehaviour, and since they can be attached to many components they can have many instances of the
same class executing at the same time.

In addition, Unity has a drag-and-drop feature for public variables within monobehaviours which I have made use of
to decrease the amount of expensive Find calls for objects existing throughout the entire execution of the program.
This has been used in Prefabs, which are pre-made complex GameObjects with preset variable values to allow easy
instantiation of multiple instances of the same object (eg: plotting points on the graph). Below is an example of this.

In the photo above, you can also see the hierarchy to the left of the screen. Each object can have a parent or a child,
however the child only inherits the movement from the parent, not any other classes. The parent therefore acts as a
container for it’s child classes.

Due to the way that classes in unity can be set as components of a GameObject, multiple instances of the same
classes can exist at any one time within a scene. The following entity relationship diagram shows how this works in
Physim, where MainAssembly, Canvas, Structure Element and projectile are all GameObjects and the rest are C#
classes which inheret monobehaviour (so are effectively components of their respective GameObjects).

This is an example of public variables

within a prefab being set via unity’s drag

and drop feature within the structure

element. The Left Node Point, Right Node

Point and Rectangle are all children of the

structure element therefore they co-exist

with it.

26 Alex Bury

3.2 Complex Programming Index

All the complex programming locations listed below are highlighted in bright green within the Source Code itself for
easy reference.

3.3.1 Contains:

- Recursive depth first graph traversal.
- Linear search of a list of 2 element arrays.
- FollowCurser coroutine which makes a clicked node follow the curser.

3.3.2 Contains:

- GameState events which can be subscribed to by any procedure globally.

3.3.4 Contains:

- The UpdateLocalPosition procedure which makes the cubioid of the structure element translate, scale and
rotate to meed each node at either end.

3.3.5 Contains:

- The UpdateLocalPosition procedure which makes the cubioid and the other node of the projectile translate
to meet the other node at the other side of the cuboid.

- The FixedUpdate procedure which contains the calculation of Displacement, Velocity, Acceleration and
force.

3.3.6 Contains:

- The UsePhysics procedure which sets up all the Pivots and SplitJoints and makes anchored subassembilies
anchored.

3.3.7 Contains:

- The Orient coroutine which moves the camera to a specific location given an input.
- The Simulate coroutine which makes the camera move to fit all of the nodes within the frame during a

simulation.

27 Alex Bury

3.3.8 Contains:

- The LocateRedundantPoints function which returns all points that lie outside of veiw to be recycled.

3.3.9 Contains:

- The ShowProjectileNumbers procedure which displays which projectile is which when the mouse is hovering
over a projectile drop down.

3.3.10 Contains:

- The ConvertToSerialisableClass which creates an abstraction of the MainAssembly into AssemblyData and
AssemblyElement classes which can then be serialised into JSON format.

- The ConvertFromSerialisableClass which uses AssemblyData and AssemblyElement classes from JSON format
to reconstruct the MainAssembly.

3.3.11 & 3.3.12 Contain:

- The UpdateFileList procedure which displays all files with the .phys extension in a persistant data location in
appData on a machine as buttons in a scroll view GUI object.

3.3 SourceCode

3.3.1 AssemblyManagementScript

This class is of type MonoBehaviouir and is attached to the MainAssembly gameobject. It manages the construction
and destruction of simulation assembilies.

using System.Collections;
using System.Collections.Generic;
using System.Linq;
using UnityEngine;

[System.Serializable]
public class AssemblyManagementScript : MonoBehaviour
{
 private bool EditMode = false;
 [SerializeField]
 private List<GameObject> Node = new List<GameObject>();
 [SerializeField] // These variables must be serialized to ensure that their
value is preserved when the MainAssembly class is cloned.
 private List<bool> MouseDownFlag = new List<bool>();
 [SerializeField]
 private List<bool> MouseOverFlag = new List<bool>();
 private Vector3 NodePos;
 private Vector3 MousePos;
 private float intersectionRange;
 private const int RangeMultiplier = 100;
 private bool Moving;
 private List<bool> removedFlag = new List<bool>();
 private bool MouseUp;
 private bool BreakFlag;
 private GameObject Canvas;
 private GUIScript gUIScript;
 private bool JustMoved = false;
 [SerializeField]
 private List<GameObject[]> Pivots = new List<GameObject[]>(); // Pivots are strictly between 2 nodes only,
therefore they are stored in a list of 2 element arrays.
 [SerializeField]
 private List<GameObject> Anchors = new List<GameObject>();
 [SerializeField]
 private List<GameObject[]> SplitJoints = new List<GameObject[]>(); // Split joints are strictly between 2 nodes
only, therefore they are stored in a list of 2 element arrays.
 private GameObject OtherNode;
 private bool firstNode = true;
 private List<GameObject> Projectiles = new List<GameObject>();
 private string mode;
 [SerializeField]

28 Alex Bury

 private List<GameObject> AssemblyElements = new List<GameObject>();
 private int locationIndex = -1;
 private bool snapFlag;
 private List<GameObject> Visited = new List<GameObject>();
 private List<GameObject> SubAssembly = new List<GameObject>();

 public Camera VeiwCamera; // These variables are public so that they can be assigned in the inspector
 public GameObject SubAssemblyObject;

 public void AddSceneObject(GameObject obj) // Called to add a scene object
 {
 AssemblyElements.Add(obj);
 }

 public void RemoveAnchors(GameObject obj) // Removes a given anchor from the list of anchors
 {
 Anchors.Remove(obj);
 Anchors.TrimExcess(); // Sorts the list, shuffling it along to fill any spaces and deletes excess.
 }

 public void DeleteSceneObject(GameObject obj) // Called when a scene object needs to be deleted.
 {
 AssemblyElements.Remove(obj);
 obj.GetComponent<NodeConnectionScript>().OnDelete(this); // Calls the OnDelete() procedure within the
NodeConnectionScript attached to the gameObject.
 Destroy(obj); // Physically deletes the object.
 }

 public void UpdateProjectilesList(GameObject Proj, bool isInScene) // Updates the projeciles list with a given
projectile depending whether its active or not.
 {
 if (isInScene == true) // If its active
 {
 Projectiles.Add(Proj);
 }
 else // If its inactive
 {
 if (Projectiles.IndexOf(Proj) != -1) // If the projectile exists in the list of projectiles
 {
 Projectiles.RemoveAt(Projectiles.IndexOf(Proj)); // Remove the projectile from the list.
 }
 }
 Projectiles.TrimExcess();
 }

 public List<GameObject> getObjList() // Returns the list of all the nodes and the projectiles together for use
by the CameraManagementScript.
 {
 List<GameObject> objs = Node.Concat<GameObject>(Projectiles).ToList<GameObject>();
 return objs;
 }

 public void RemoveNode(GameObject node) // Is called when a node needs to be removed after an object is deleted.
 {
 Node.Remove(node);
 Node.TrimExcess();
 }

 public void UpdateTypeList(GameObject node, string type, string oldType) // Updates the Pivots, Anchors and
Split joint arrays with the node type data. This function is called twice from the two associated nodes of split
joints and pivots, therefore the order in which this is called is monumental.
 {
 if (type == "SplitJoint" || oldType == "SplitJoint" || type == "Pivot" || oldType == "Pivot") // Used to
keep track of the nodes listed in the lists of arrays.
 {
 if (firstNode == true) // If it's the first node it will put it in a variable and wait for the second
node.
 {
 OtherNode = node; // Keeps track of the first node.
 firstNode = false;
 }
 else
 {
 if (oldType == "Pivot") // Removes the old Pivots from the lists.
 {
 try

29 Alex Bury

 {
 Pivots.RemoveAt(FindListIndex(Pivots, node, OtherNode));
 }
 catch
 {
 Debug.Log("Fatal Error: Unable to locate Pivot");
 }
 }
 else if (oldType == "SplitJoint") // Removes the old SplitJoints from the lists.
 {
 try
 {
 SplitJoints.RemoveAt(FindListIndex(SplitJoints, node, OtherNode));
 }
 catch
 {
 Debug.Log("Fatal Error: Unable to locate SplitJoint");
 }
 }

 if (type == "Pivot") // Adds the Pivots to the list.
 {
 GameObject[] pvt = { node, OtherNode };
 Pivots.Add(pvt);
 }
 else if (type == "SplitJoint") // Adds the SplitJoints to the list.
 {
 GameObject[] sjt = { node, OtherNode };
 SplitJoints.Add(sjt);
 }
 firstNode = true;
 }
 }
 if (oldType == "Anchor")
 {
 Anchors.Remove(node);
 }
 if (type == "Anchor")
 {
 Anchors.Add(node);
 }
 }
 private int FindListIndex(List<GameObject[]> list, GameObject node, GameObject other) // Returns the index of a
pivot/split joint in an array. If it's not present, -1 is returned.
 {
 int index = -1;
 int i = 0;
 if (other != null)
 {
 foreach (GameObject[] ary in list) // Iterates through the list
 {
 if (node == ary[0] && other == ary[1]) // If they appear in this order
 {
 index = i; // The list index of the item being searched for = i.
 break;
 }
 else if (other == ary[0] && node == ary[1]) // Or if they appear in the other order
 {
 index = i; // The list index of the item being searched for = i.
 break;
 }
 i++;
 }
 }
 else // Allows only one node to be passed to the procedure.
 {
 foreach (GameObject[] ary in list)
 {
 if (node == ary[0])
 {
 index = i;
 break;
 }
 else if (node == ary[1])
 {
 index = i;

30 Alex Bury

 break;
 }
 i++;
 }
 }
 return index;
 }

 private void AddConnections(GameObject node, GameObject otherNode, NodeConnectionScript nodeConnectionScript)
// Is called upon a connection between nodes being made. Adds the other node to a given node's connected list as well
as the other nodes connected nodes & vice versa.
 {
 StartCoroutine(nodeConnectionScript.UpdateConnection(node, otherNode, true)); // Updates this node.
 GameObject OtherObject = otherNode.transform.parent.parent.gameObject;
 NodeConnectionScript otherNodeConnectionScript = OtherObject.GetComponent<NodeConnectionScript>();
 List<GameObject> otherNodeList = otherNodeConnectionScript.GetNodeList(otherNode); // The nodes connected to
the other node.
 for (int i = 0; i < otherNodeList.Count; i++)
 {
 GameObject tempObject = otherNodeList[i].transform.parent.parent.gameObject;
 NodeConnectionScript tempNodeConnectionScript = tempObject.GetComponent<NodeConnectionScript>();
 StartCoroutine(nodeConnectionScript.UpdateConnection(node, otherNodeList[i], true));
 StartCoroutine(tempNodeConnectionScript.UpdateConnection(otherNodeList[i], node, true));
 }
 StartCoroutine(otherNodeConnectionScript.UpdateConnection(otherNode, node, true)); // Updates the other node.
 }

 public void RemoveConnections(GameObject node, GameObject otherNode, NodeConnectionScript nodeConnectionScript) //
Is called upon a node in the scene being clicked. Removes the other node from a given node's connected list as well as
the other nodes connected nodes & vice versa.
 {
 nodeConnectionScript.UpdateNodeType(node, "Standard"); // Turns the node back into a standard node since it
has been disconnected.
 GameObject OtherObject = otherNode.transform.parent.parent.gameObject;
 NodeConnectionScript otherNodeConnectionScript = OtherObject.GetComponent<NodeConnectionScript>();
 StartCoroutine(otherNodeConnectionScript.UpdateConnection(otherNode, node, false)); // Updates the other node.
 List<GameObject> otherNodeList = otherNodeConnectionScript.GetNodeList(otherNode); // The nodes connected to
the other node.
 for (int i = 0; i < otherNodeList.Count; i++)
 {
 GameObject tempObject = otherNodeList[i].transform.parent.parent.gameObject;
 NodeConnectionScript tempNodeConnectionScript = tempObject.GetComponent<NodeConnectionScript>();
 StartCoroutine(tempNodeConnectionScript.UpdateConnection(otherNodeList[i], node, false));
 }
 StartCoroutine(nodeConnectionScript.ClearConnectionList(node));
 }

 private void OnEnable() // Is called once upon the object being enabled in the Higherarchy
 {
 snapFlag = false;
 VeiwCamera = Camera.main;
 Canvas = GameObject.Find("Canvas");
 gUIScript = Canvas.GetComponent<GUIScript>();
 mode = gUIScript.GetMode();
 }

 public void OnEditMode() // Is called once when in edit mode by GUIScript.
 {
 ShowAllSpecialNodes(); // Makes sure all the special nodes are visible.
 EditMode = true;
 StartCoroutine(CheckCurserPosition()); // Starts checking if the curser is over any node in the scene.
 }

 public void OnSimulationMode() // Is called once when in simulation mode by GUIScript.
 {
 EditMode = false;
 Assemble(); // To build the structure into subassembilies
 applyPhysics(); // Make the structure use physics
 }

 public void SetEditMode(bool set) // Called to update the current status of EditMode locally
 {
 EditMode = set;
 }

 public void clearLists() // Clears the lists with stored information ready to be used.

31 Alex Bury

 {
 Node.Clear();
 MouseDownFlag.Clear();
 MouseOverFlag.Clear();
 }
 public void UpdateNodeList(GameObject parent, GameObject node1, GameObject node2) // Called to intialise the
nodes when a new placeable object is instantiated into the scene
 {
 Node.Add(node1);
 MouseDownFlag.Add(false); // MouseDownFlag and MouseOVerFlag act as lists parallel to the list of nodes.
 MouseOverFlag.Add(false);
 Node.Add(node2);
 MouseDownFlag.Add(false);
 MouseOverFlag.Add(false);
 }

 private IEnumerator CheckCurserPosition() // Checks if the current curser is over any node in the scene and
whether it has been clicked
 {
 BreakFlag = false;
 while (EditMode == true && Moving == false)
 {
 if (mode != "Delete")
 {
 for (int i = 0; i < Node.Count; i++) // Iterates through the list of nodes
 {
 Vector3 MousePos = Input.mousePosition;
 NodePos = VeiwCamera.WorldToScreenPoint(Node[i].transform.position); // Gets the point of the
current node on the screen
 intersectionRange = RangeMultiplier /
(VeiwCamera.WorldToScreenPoint(Node[i].transform.position).z);
 if ((NodePos.x - intersectionRange) < (MousePos.x) && (MousePos.x) < (NodePos.x +
intersectionRange) && (NodePos.y - intersectionRange) < (MousePos.y) && (MousePos.y) < (NodePos.y +
intersectionRange)) // If the curser lies within a range of values around the node.
 {
 if (Input.GetMouseButtonDown(0)) // If right mouse is down
 {
 for (int y = 0; y < MouseDownFlag.Count; y++) // Iterates through each MouseDownFlag
value, which corresponds to each node (parallel to the list of nodes).
 {
 if (MouseDownFlag[y] == false) // If the mouse isnt already down on a node
 {
 MouseDownFlag[i] = true; // Make the mouse down on this node
 Moving = true;
 StartCoroutine(MouseDownOnNode(Node[i], i)); // Called once when the mouse is
down on a node
 BreakFlag = true; // Signal to break the first iteration after a node is
clicked.
 yield break;
 }
 }
 }
 else // If right mouse is not down
 {
 Moving = false; // Not moving
 MouseDownFlag[i] = false; // The mouse is not down
 if (MouseOverFlag[i] == false) // If the mouse wasnt over the node before
 {
 MouseOverFlag[i] = true;
 MouseOverNode(Node[i]); // The mouse is now recognised as being over the node
 }
 }
 }
 else // If the mouse lies outside the intersection range of the node
 {
 MouseOverFlag[i] = false; // The mouse is not over the node
 if (MouseDownFlag[i] == false) // If the mouse is not down on the node
 {
 GameObject placeableObj = Node[i].transform.parent.parent.gameObject;
 NodeConnectionScript NCS = placeableObj.GetComponent<NodeConnectionScript>(); // Gets
the node's associated NodeConnectionScript attached to its parent placeable object.
 if (NCS.GetNodeType(Node[i]) == "Standard")
 {
 Node[i].SetActive(false); // Hide the node's sphere.
 }
 }

32 Alex Bury

 }
 if (BreakFlag == true) // If the iteration should break
 {
 yield break; // Break the iteration
 }
 }
 }
 else // If in delete mode
 {
 for (int i = 0; i < AssemblyElements.Count; i++) // Iterate through the list of assembly elements
 {
 Vector3 MousePos = Input.mousePosition;
 Vector3 ObjPosition =
VeiwCamera.WorldToScreenPoint(AssemblyElements[i].transform.GetChild(1).position); // Finds the body of the assembly
object (the mesh is attached to the second child in all cases), then gets the on-screen position of this.
 if ((ObjPosition.x - intersectionRange) < (MousePos.x) && (MousePos.x) < (ObjPosition.x +
intersectionRange) && (ObjPosition.y - intersectionRange) < (MousePos.y) && (MousePos.y) < (ObjPosition.y +
intersectionRange)) // If the mouse lies within a range around the object.
 {
 if (Input.GetMouseButtonDown(0)) // If the mouse is clicked
 {
 DeleteSceneObject(AssemblyElements[i]); // Delete the GameObject
 }
 }
 yield return null;
 }
 }
 mode = gUIScript.GetMode(); // Gets the current mode from GUIScript and updates this script's variable.
 yield return null;
 }
 yield return null;
 }

 private IEnumerator MouseDownOnNode(GameObject node, int flagPos) // Is called once when a node is clicked and
decides what to do based on the current mode.
 {
 GameObject Canvas = GameObject.Find("Canvas");
 GUIScript gUIScript = Canvas.GetComponent<GUIScript>();
 GameObject placeableObj = node.transform.parent.parent.gameObject;
 NodeConnectionScript NCS = placeableObj.GetComponent<NodeConnectionScript>();
 string mode = gUIScript.GetMode();
 if (mode == "Build")
 {
 StartCoroutine(FollowCurser(node, flagPos)); // Starts the coroutine to make the node follow the curser
 }
 else // If selecting pivot/ split joint/ anchor
 {
 NCS.UpdateNodeType(node, mode); // Update the type of node based on the current mode
 Moving = false;
 MouseUp = false;
 yield return new WaitUntil(() => MouseUp = true); // Waits until left mouse is released
 StartCoroutine(CheckCurserPosition()); // Starts checking the position of the curser once again
 }
 }
 private void OnMouseUp() // Is called by UnityEngine when left mouse is lifted.
 {
 MouseUp = true;
 }

 private void MouseOverNode(GameObject node) // Is called once when the mouse is over a node.
 {
 node.SetActive(true); // Makes the node visible
 }

 public IEnumerator FollowCurser(GameObject node, int flagPos) // Makes whichever node has been clicked follow
the curser.
 {
 GameObject PlaceableObject = node.transform.parent.parent.gameObject; // Gets the parent Placeable Object of
the node.
 NodeConnectionScript nodeConnectionScript = PlaceableObject.GetComponent<NodeConnectionScript>(); // Locates
the NodeConnectionScript attached to this placeable object
 float initialPosRelToCam = VeiwCamera.WorldToScreenPoint(node.transform.position).z; // This is the
perpendicular distance from the camera object to the node's position.
 Vector2 mousePos = new Vector2(); // Initialises lists
 List<GameObject> OtherNodes = new List<GameObject>();

33 Alex Bury

 if (Node.Count != 0) // If there is any nodes in the scene
 {
 for (int i = 0; i < Node.Count; i++) // Iterate through the nodes
 {
 if (node.transform.parent.gameObject != Node[i].transform.parent.gameObject) // If the node current
node isnt part of the same placeable object as the node thats been clicked.
 {
 OtherNodes.Add(Node[i]); // Populates a list of all nodes in the scene other than the given
node and the one attached to the same object.
 removedFlag.Add(true);
 }
 }
 }
 while ((MouseDownFlag[flagPos] == true) && (EditMode == true)) // While the mouse is down on the node and the
simulation is in edit mode.
 {
 NodePos = VeiwCamera.WorldToScreenPoint(node.transform.position); // Finds the location of the node on
the screen.
 mousePos.x = Input.mousePosition.x;
 mousePos.y = Input.mousePosition.y;
 if (OtherNodes.Count != 0) // If there is any snappable nodes in the scene.
 {
 for (int i = 0; i < OtherNodes.Count; i++)
 {
 Vector3 OtherNodePos = VeiwCamera.WorldToScreenPoint(OtherNodes[i].transform.position); // Finds
the location of the other node on the screen
 intersectionRange = RangeMultiplier / (OtherNodePos.z); // Calculates on the intersection range
based on the distance the other node is from the camera object
 if ((OtherNodePos.x - intersectionRange) < mousePos.x && mousePos.x < (OtherNodePos.x +
intersectionRange) && (OtherNodePos.y - intersectionRange) < mousePos.y && mousePos.y < (OtherNodePos.y +
intersectionRange)) // If the mouse lies within a range around the other node
 {
 NodeConnectionScript NCS =
Node[i].transform.parent.parent.gameObject.GetComponent<NodeConnectionScript>(); // Locates the NCS of the other node
object
 if (snapFlag == false && (NCS.GetNodeType(Node[i]) != "Pivot" && NCS.GetNodeType(Node[i]) !=
"SplitJoint")) // Makes sure that the node cannot snap to any pivots or split joints.
 {
 Vector3 newPosition = OtherNodes[i].transform.position;
 node.transform.position = newPosition; // Sets the current node's position to the other
node so that they snap together.
 snapFlag = true;
 AddConnections(node, OtherNodes[i], nodeConnectionScript); // Add the connection between
the two snapped nodes
 locationIndex = i;
 }
 }
 else // If the node lies outside the snapping range
 {
 if (i == locationIndex) // If the node used to be connected to the other node
 {
 locationIndex = -1;
 RemoveConnections(node, OtherNodes[i], nodeConnectionScript); // Remove the connections
between the two nodes
 StartCoroutine(WaitUntilCurserFree(OtherNodePos)); // Starts a coroutine which waits
until the curser has left a range larger than needed to snap to the other node to prevent flickering between being
connected and not.
 }
 if (snapFlag == false) // If the node is not snapped to anything else
 {
 node.transform.position = VeiwCamera.ScreenToWorldPoint(new Vector3(mousePos.x,
mousePos.y, initialPosRelToCam)); // Make the node follow the position of the curser, maintaining it's perpendicular
distance away from the camera
 }
 }
 }
 }
 else // If there are no other snappable nodes
 {
 node.transform.position = VeiwCamera.ScreenToWorldPoint(new Vector3(mousePos.x, mousePos.y,
initialPosRelToCam)); // Make the node follow the position of the curser, maintaining it's perpendicular distance
away from the camera
 }
 if (node.transform.parent.parent.gameObject.GetComponent<StructEleScript>() != null) // If the node is
attached to a structure element
 {

34 Alex Bury

 StructEleScript ObjectScript = PlaceableObject.GetComponent<StructEleScript>();
 ObjectScript.UpdateLocalPosition(); // Tells the Object-specific script attached to the placeable
object to account for the movement of the node
 }
 else if (node.transform.parent.parent.gameObject.GetComponent<ProjectileScript>() != null) // If its a
projectile
 {
 ProjectileScript ObjectScript = PlaceableObject.GetComponent<ProjectileScript>();
 ObjectScript.UpdateLocalPosition(); // Tells the Object-specific script attached to the placeable
object to account for the movement of the node
 }
 else // This should never be reached, and if it is, the program is set up incorrectly within Unity
Editor.
 {
 Debug.Log("Fatal error: Object type not found!");
 }
 if (Input.GetMouseButtonUp(0)) // If the left mouse button is up
 {
 MouseDownFlag[flagPos] = false; // Updates the MouseDownFlag list to show this.
 }
 yield return null;
 }
 snapFlag = false;
 Moving = false;
 OtherNodes.Clear(); // Clears the list of other nodes to tidy up
 StartCoroutine(CheckCurserPosition()); // Start checking if the curser is over any node in the scene once
again.
 }

 private IEnumerator WaitUntilCurserFree(Vector3 OtherNodePos) // This coroutine waits until the mouse has left a
region which is greater than the snapping region of the node to signal that the node is no longer snapped, to prevent
flickering between being snapped and not.
 {
 Vector2 mousePos = new Vector2();
 mousePos.x = Input.mousePosition.x;
 mousePos.y = Input.mousePosition.y;
 while ((OtherNodePos.x - (intersectionRange + 2)) < mousePos.x && mousePos.x < (OtherNodePos.x +
(intersectionRange + 2)) && (OtherNodePos.y - (intersectionRange + 2)) < mousePos.y && mousePos.y < (OtherNodePos.y +
(intersectionRange + 2))) // While the mouse lies within a slightly larger range than needed to snap.
 {
 mousePos.x = Input.mousePosition.x;
 mousePos.y = Input.mousePosition.y;
 yield return null;
 }
 snapFlag = false; // Effectively un-snaps the node, as this variable is checked in every iteration inside
the previous coroutine.
 yield return null;
 }
 public IEnumerator SimpleFollowCurser(GameObject gameObject) // Any object follow the curser until it it
clicked. Used when instantiating objects.
 {
 Vector3 mousePos = new Vector3();
 while (Input.GetMouseButtonDown(0) == false) // While left mouse is not clicked.
 {
 mousePos.x = Input.mousePosition.x;
 mousePos.y = Input.mousePosition.y;
 mousePos.z = Input.mousePosition.z;
 gameObject.transform.position = VeiwCamera.ScreenToWorldPoint(new Vector3(mousePos.x, mousePos.y, 10f));
// The object follows the curser.
 yield return null;
 }
 yield return null;
 }

 public void ShowAllSpecialNodes() // This procedure sets all the non-standard nodes to active.
 {
 foreach (GameObject[] piv in Pivots) // Iterates through the list of arrays of pivots, and sets each one as
active so they can be seen.
 {
 piv[0].SetActive(true);
 piv[1].SetActive(true);
 }
 foreach (GameObject[] SJ in SplitJoints) // Iterates through the list of arrays of split joints, and sets
each one as active so they can be seen.
 {
 SJ[0].SetActive(true);

35 Alex Bury

 SJ[1].SetActive(true);
 }
 foreach (GameObject an in Anchors) // Iterates through the list of anchors and sets each one as active so
they can be seen.
 {
 an.SetActive(true);
 }
 }

 public void Assemble() // Assembles the MainAssembly into subassembilies.
 {
 List<GameObject> sceneObject = new List<GameObject>();
 List<GameObject> unvisitedObject = new List<GameObject>();
 int numberOfObjects = this.transform.childCount;
 Visited.Clear();
 for (int i = 0; i < numberOfObjects; i++)
 {
 sceneObject.Add(transform.GetChild(i).gameObject); // Adds all the placeable objects in the scene into
a list.
 }
 List<GameObject> VisitedTemp = new List<GameObject>();
 unvisitedObject = sceneObject; // All the objects are initially unvisited.
 while (unvisitedObject.Count != 0) // Finds and allocates each individual subassembly.
 {
 VisitedTemp.Clear();
 VisitedTemp = DepthFirstTrav(unvisitedObject[0], Visited); // Conducts a Depth-First graph traversal of
the structure, starting from the first element in the list.
 CreateSubAssembly(VisitedTemp); // Creates a subassembly containg all the visited nodes in that
subassembly
 unvisitedObject = unvisitedObject.Except(VisitedTemp).ToList(); // Removes any now visited items from the
unvisited list.
 unvisitedObject.TrimExcess(); // Tidies up list and removes empty elements.
 }
 }

 private void CreateSubAssembly(List<GameObject> Child) // Creates a new sub assembly with the given nodes as it's
children.
 {
 GameObject SubAssObj = Instantiate(SubAssemblyObject, new Vector3(0, 0, 0), new Quaternion(0, 0, 0, 0)); //
Instantiates a new SubAssembly object in the scene.
 SubAssObj.transform.parent = this.transform; // Makes the new SubAssembly a child of the MainAssembly
object
 SubAssembly.Add(SubAssObj); // Adds the new SubAssembly to the list of subassembilies in the scene.
 for (int i = 0; i < Child.Count; i++)
 {
 Child[i].transform.parent = SubAssObj.transform; // Makes all given GameObjects the child of the new
SubAssembly
 }
 }
 private List<GameObject> DepthFirstTrav(GameObject Obj, List<GameObject> VisitedList) // Perfomes a recursive
Depth-First-Traversal of the connections to a given node and returns all the connections.
 {
 List<GameObject> connectedObj = new List<GameObject>();
 NodeConnectionScript NCS = Obj.GetComponent<NodeConnectionScript>();
 connectedObj = NCS.getConnectionList();
 VisitedList.Add(Obj);
 for (int i = 0; i < connectedObj.Count; i++)
 {
 if (VisitedList.Contains(connectedObj[i]) == false) // If the node hasn't already been visited
 {
 VisitedList.Concat(DepthFirstTrav(connectedObj[i], VisitedList)); // Finds the objects indirectly
connected to the given one (Cousin objects).
 }
 }
 return VisitedList;
 }

 private void applyPhysics() // Makes the subassembilies use physics by adding components.
 {
 for (int i = 0; i < Pivots.Count; i++) // Iterates through the list of pivots.
 {
 SubAssemblyScript SAS =
Pivots[i][0].transform.parent.parent.parent.gameObject.GetComponent<SubAssemblyScript>();
 SAS.AddPivot(Pivots[i][0], Pivots[i][1].transform.parent.parent.parent.gameObject); // Tells the
subAssbembly where it's pivots are if it has any.
 }

36 Alex Bury

 for (int i = 0; i < SplitJoints.Count; i++)
 {
 SubAssemblyScript SAS =
SplitJoints[i][0].transform.parent.parent.parent.gameObject.GetComponent<SubAssemblyScript>();
 SAS.AddSplitJoint(SplitJoints[i][0], SplitJoints[i][1].transform.parent.parent.parent.gameObject); //
Tells the subAssbembly where it's split joints are if it has any.
 }
 for (int i = 0; i < Anchors.Count; i++)
 {
 SubAssemblyScript SAS =
Anchors[i].transform.parent.parent.parent.gameObject.GetComponent<SubAssemblyScript>();
 SAS.IsAnchored(true); // Tells the subAssembly if it's anchored.
 }
 foreach (GameObject subAssy in SubAssembly)
 {
 SubAssemblyScript SAS = subAssy.GetComponent<SubAssemblyScript>();
 SAS.UsePhysics(); // Tells each SubAssembly to use physics depending on its properties.
 }
 }

 public void ReconstructConnections() // Called to reconstruct connetctions between a newly loaded main
assembly.
 {
 foreach (GameObject node in Node)
 {
 NodeConnectionScript NCS = node.transform.parent.parent.gameObject.GetComponent<NodeConnectionScript>();
 if (node != null) // Makes sure that the current node exists and therefore hasn't been visited before
 {
 foreach (GameObject otherNode in Node)
 {
 //NodeConnectionScript otherNCS =
otherNode.transform.parent.parent.gameObject.GetComponent<NodeConnectionScript>();
 if (node != otherNode)
 {
 if (node.transform.position == otherNode.transform.position) // If they share the same
position then they are connected.
 {
 AddConnections(node, otherNode, NCS); // Add the connection between the two nodes
 }
 }
 }
 }
 if (NCS.GetNodeType(node) != NCS.getTempNodeType(node)) // If the node type hasnt already been changed via
a connection to another node.
 {
 NCS.UpdateNodeType(node, NCS.getTempNodeType(node)); // Set the node type.
 }
 }
 }

 public GameObject getProjectile(int i) // Returns a projectile given it's index in the projectiles list.
 {
 if (Projectiles.Count != 0)
 {
 return Projectiles[i];
 }
 else
 {
 return null;
 }
 }

 public List<GameObject> getProjectileList() // Returns the list of currently active projectiles
 {
 return Projectiles;
 }
}

3.3.2 GUIScript

This class is of type MonoBehaviouir and is attached to the Canvas gameObject (plane on which the UI is displayed).
It contains the algorithms to act as the SimulationManager, but is named GUIScript as it interfaces between the GUI
and the world.

37 Alex Bury

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using UnityEngine.UI;

public class GUIScript : MonoBehaviour
{

 private GraphScript GraphingPanel1Script;
 private AssemblyManagementScript assemblyManagementScript;
 private GameObject SimulationPanel;
 private GameObject EditPanel;
 private GameObject currentAssembly;
 private GameObject StartButton;
 private GameObject SavePanel;
 private GameObject LoadPanel;
 private GameObject NoticePanel;
 private string mode;
 private bool simulating;
 private bool editing;
 private Dropdown DD1;
 private Dropdown DD2;
 private GameObject ProjectileNumber;
 private List<GameObject> CurrentProjectileNumbers;

 public GameObject MainAssembly; // These are assigned in the UnityEditor
 public Camera MainCamera;

 public delegate void ToggleEditMode(); // These must be public as they are events
 public static event ToggleEditMode toggleEditMode;
 public delegate void ToggleSimulationMode();
 public static event ToggleSimulationMode toggleSimulationMode;
 public delegate void Simulate();
 public static event Simulate OnSimulate;
 public delegate void SimulateEnd();
 public static event SimulateEnd OnSimulateEnd;

 void Start() // Called at the start of the program's execution
 {
 GraphingPanel1Script = GameObject.Find("/Canvas/GraphingPanel1").GetComponent<GraphScript>();
 DD1 = GameObject.Find("/Canvas/EditPanel/GraphingPanel1Settings/ProjectileDropdown").GetComponent<Dropdown>();
 DD2 = GameObject.Find("/Canvas/EditPanel/GraphingPanel2Settings/ProjectileDropdown").GetComponent<Dropdown>();
 editing = false;
 mode = "Build";
 assemblyManagementScript = MainAssembly.GetComponent<AssemblyManagementScript>();
 assemblyManagementScript.clearLists();
 SimulationPanel = GameObject.Find("SimulationPanel");
 SimulationPanel.SetActive(true);
 EditPanel = GameObject.Find("EditPanel");
 EditPanel.SetActive(false);
 SavePanel = GameObject.Find("SavePanel");
 SavePanel.SetActive(false);
 LoadPanel = GameObject.Find("LoadPanel");
 LoadPanel.SetActive(false);
 NoticePanel = GameObject.Find("NoticePanel");
 NoticePanel.SetActive(false);

 }

 public AssemblyManagementScript replaceAssembly(GameObject old) // Replaces the current assembly with a new one
when going back into edit mode
 {
 if (currentAssembly != null)
 {
 Destroy(old);
 currentAssembly.SetActive(true);
 MainAssembly = currentAssembly;
 MainAssembly.name = "MainAssembly";
 assemblyManagementScript = MainAssembly.GetComponent<AssemblyManagementScript>();
 }
 return assemblyManagementScript;
 }

 public void SimulationRun(GameObject StartBtn) // Globally called once when "Start" button is clicked
 {

38 Alex Bury

 simulating = true;
 OnSimulate(); // Triggers the OnSimulate event.
 StartCoroutine(GraphingPanel1Script.setElapsedTimeText()); // Starts setting the readout values.
 StartButton = StartBtn;
 StartButton.SetActive(false); // Hides the start button so that the stop button is shown, as the stop button
is behind it.
 Debug.Log("Simulating");
 }

 public void SimulationStop(GameObject StopBtn) // Globally called once when "Stop" button is clicked
 {
 simulating = false;
 StartButton.SetActive(true); // Shows the start button.
 OnSimulateEnd(); // Triggers the OnSimulateEnd event.
 }

 public void ResetSimulation() // Globally called once when "Reset" button is clicked. Switches to edit mode then
back to simulation mode in the next frame.
 {
 if (simulating != true)
 {
 AssemblyManagementScript AMS = replaceAssembly(MainAssembly);
 editing = true; // Switches back to edit mode
 SimulationPanel.SetActive(false);
 EditPanel.SetActive(true);
 StartCoroutine(WaitForNextFrame(AMS, true));
 }
 else
 {
 Debug.Log("You must stop the simulation before you can go into edit mode!.");
 NotifyUser("You must stop the simulation before you can go into edit mode.");
 }
 }

 public bool IsSimulating() // Returns if the simulation is currently in simulation mode
 {
 return simulating;
 }
 public void EditMode() // Called once when "Edit Mode" button is clicked
 {
 if (simulating != true)
 {
 editing = true;
 SimulationPanel.SetActive(false);
 EditPanel.SetActive(true);
 AssemblyManagementScript AMS = replaceAssembly(MainAssembly);
 StartCoroutine(WaitForNextFrame(AMS, false));
 }
 else
 {
 Debug.Log("You must stop the simulation before you can go into edit mode!.");
 NotifyUser("You must stop the simulation before you can go into edit mode.");
 }
 }

 public bool isEditing() // Returns if the simulation is currently in edit mode
 {
 return editing;
 }

 private IEnumerator WaitForNextFrame(AssemblyManagementScript AMS, bool isResetting) // Needs to wait for the
next frame as the gameobject will not be destroyed until the end of the current frame.
 {
 yield return new WaitForFixedUpdate();
 if (toggleEditMode != null) // If the toggleEditMode event if it's not already being triggered.
 {
 toggleEditMode(); // Initiates the toggleEditMode event.
 }
 AMS.OnEditMode();
 if (isResetting == true) // If it needs to go back to simulation mode afterwards.
 {
 SimulationMode(); // Initiates the SimulationMode event.
 }
 }

 public void SimulationMode() // Called once when "Simulation Mode" button is clicked

39 Alex Bury

 {
 if (toggleSimulationMode != null)
 {
 toggleSimulationMode();
 }
 editing = false;
 EditPanel.SetActive(false);
 SimulationPanel.SetActive(true);
 currentAssembly = Instantiate(MainAssembly, new Vector3(0, 0, 0), new Quaternion(0, 0, 0, 0)); // Clones the
mian assembly before it's split into subassembilies.
 currentAssembly.SetActive(false);
 if (MainAssembly != null)
 {
 assemblyManagementScript.OnSimulationMode();
 }
 }

 public void ExitProgram() // Called once when "Exit" button is clicked
 {
 Application.Quit();
 }

 public void instantiateObject(GameObject placeableObject) // Is called directly by the GUI instantiate buttons.
 {
 assemblyManagementScript.SetEditMode(false);
 GameObject instantiatedObject = Instantiate(placeableObject, new Vector3(0, 0, 0), Quaternion.identity);
 NodeConnectionScript NCS = instantiatedObject.GetComponent<NodeConnectionScript>();
 NCS.ClearAllLists();
 NCS.InitialiseNodeTypes();
 instantiatedObject.transform.parent = MainAssembly.transform;
 NCS.OnObjectLoaded();
 StartCoroutine(assemblyManagementScript.SimpleFollowCurser(instantiatedObject));
 assemblyManagementScript.OnEditMode();
 if (assemblyManagementScript == null) // Makes sure its the most recent version of the main assembly.
 {
 assemblyManagementScript = GameObject.Find("MainAssembly").GetComponent<AssemblyManagementScript>();
 }
 assemblyManagementScript.AddSceneObject(instantiatedObject);
 }

 public void OnLoadScene() // Is called directly by the load buttons
 {
 if (simulating != true)
 {
 LoadPanel.SetActive(true);
 }
 else
 {
 Debug.Log("You must stop this simulation before you can load a new one.");
 NotifyUser("You must stop the simulation before you can load a new one.");
 }
 }

 public void OnSaveScene() // Is called directly by the save button
 {
 SavePanel.SetActive(true);
 }

 public GameObject getMainAssembly() // Returns the current MainAssembly object
 {
 return MainAssembly;
 }

 public void setMainAssembly(GameObject MA) // Sets the current MainAssembly object
 {
 MainAssembly = MA;
 assemblyManagementScript = MainAssembly.GetComponent<AssemblyManagementScript>();
 }
 public void ChangeMode(GameObject calledFrom) // Accessed by the OnValueChanged function of dropdown. Changes
the current building mode.
 {
 int Index = calledFrom.GetComponent<Dropdown>().value;
 List<Dropdown.OptionData> options = calledFrom.GetComponent<Dropdown>().options;
 switch (options[Index].text)
 {
 case "Build":

40 Alex Bury

 mode = "Build";
 break;
 case "Select Pivot":
 mode = "Pivot";
 break;
 case "Select Anchor":
 mode = "Anchor";
 break;
 case "Select Split Joint":
 mode = "SplitJoint";
 break;
 case "Delete":
 mode = "Delete";
 break;
 default:
 Debug.Log("Fatal Error: Mode not found");
 break;
 }
 }

 public string GetMode() // Returns the current mode.
 {
 return mode;
 }

 public void SetDisplacementText(Vector3 dis) // Is called to set the displacement readout text.
 {
 try
 {
 GameObject.Find("/Canvas/SimulationPanel/Displacement/Values").GetComponent<Text>().text = dis.ToString();
 }
 catch
 {
 }
 }

 public void SetVelocityText(Vector3 vel) // Is called to set the velocity readout text.
 {
 try
 {
 GameObject.Find("/Canvas/SimulationPanel/Velocity/Values").GetComponent<Text>().text = vel.ToString();
 }
 catch
 {
 }
 }

 public void SetAccelerationText(Vector3 Acc) // Is called to set the acceleration readout text.
 {
 try
 {
 GameObject.Find("/Canvas/SimulationPanel/Acceleration/Values").GetComponent<Text>().text = Acc.ToString();
 }
 catch
 {
 }
 }

 public void SetForceText(Vector3 frc) // Is called to set the force readout text.
 {
 try
 {
 GameObject.Find("/Canvas/SimulationPanel/Force/Values").GetComponent<Text>().text = frc.ToString();
 }
 catch
 {
 }
 }

 public void NotifyUser(string message) // Opens a dialogue box with a given message.
 {
 Text txt = NoticePanel.transform.GetChild(0).GetChild(2).gameObject.GetComponent<Text>();
 txt.text = message;
 NoticePanel.SetActive(true);
 }

41 Alex Bury

 public void CloseNoticePanel() // Is called directly by the 'Continue' button in the noticePanel.
 {
 NoticePanel.SetActive(false);
 }

}

3.3.3 NodeConnectionScript

This class is of type MonoBehaviouir and is attached to each individual gameObject. It keeps track of the nodes’
connections and their types.

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using System;

public class NodeConnectionScript : MonoBehaviour
{
 [SerializeField] // These variables must be serialized to ensure that their value is preserved
when the MainAssembly is cloned.
 private List<GameObject> NodeObj01Connection = new List<GameObject>();
 [SerializeField]
 private List<GameObject> NodeObj02Connection = new List<GameObject>();
 [SerializeField]
 private string Node1Type;
 [SerializeField]
 private string Node2Type;
 [SerializeField]
 private GameObject Node1AssocitatedObject;
 [SerializeField]
 private GameObject Node2AssocitatedObject;
 private GameObject Canvas;
 private GUIScript gUIScript;
 private String TempNode1Type;
 private String TempNode2Type;

 public GameObject NodeObj01; // This variable is public because it is assigned manually in the unity editor.
 public GameObject NodeObj02; // This variable is public because it is assigned manually in the unity editor.
 [HideInInspector] // Hides the following public class in the unity editor Inspector window.
 public Material Pivot; // This field must be public to be accessed by reflection.
 [HideInInspector] // Hides the following public class in the unity editor Inspector window.
 public Material Anchor; // This field must be public to be accessed by reflection.
 [HideInInspector] // Hides the following public class in the unity editor Inspector window.
 public Material SplitJoint; // This field must be public to be accessed by reflection.
 [HideInInspector] // Hides the following public class in the unity editor Inspector window.
 public Material Standard; // This field must be public to be accessed by reflection.

 public List<GameObject> getNodeObjConnection(int node) // Returns the list of connected nodes to a given node.
 {
 if (node == 1)
 {
 return NodeObj01Connection;
 }
 else if (node == 2)
 {
 return NodeObj02Connection;
 }
 else
 {
 Debug.Log("Fatal Error: Node not found!");
 return null;
 }
 }

 public void setTempNodeType(GameObject node, string type) // Is used by the SaveLaodScript to temporarily store
the node type
 {
 if (node == NodeObj01)
 {
 TempNode1Type = type;
 }
 else if (node == NodeObj02)
 {
 TempNode2Type = type;

42 Alex Bury

 }
 else
 {
 Debug.Log("Fatal Error: node not found!");
 }
 }

 public string getTempNodeType(GameObject node) // Gets the node type of a given node
 {
 if (node == NodeObj01)
 {
 return TempNode1Type;
 }
 else if (node == NodeObj02)
 {
 return TempNode2Type;
 }
 else
 {
 Debug.Log("Fatal Error: node not found!");
 return null;
 }
 }

 private void OnEnable() // Is called by UnityEngine when the gameobject this script is attached to is enabled
 {
 gUIScript = GameObject.Find("Canvas").GetComponent<GUIScript>();
 GUIScript.toggleEditMode += OnEditMode; // Adds the OnEditMode procedure to the trigger event.
 Pivot = Resources.Load<Material>("PivotPointMaterial"); // Locates the different types of pivot materials
 Anchor = Resources.Load<Material>("AnchorPointMaterial");
 SplitJoint = Resources.Load<Material>("SplitJointMaterial");
 Standard = Resources.Load<Material>("NodePointMaterial");
 }

 private void OnDisable() // Is called by UnityEngine when the gameobject this script is attached to is disabled
 {
 GUIScript.toggleEditMode -= OnEditMode; // Removes the OnEditMode procedure from the trigger event.
 }

 public void OnDelete(AssemblyManagementScript AMS) // Is called upon delting the gameObject to tidy up all the
variables.
 {
 foreach (GameObject obj in NodeObj01Connection) // Hides all the attached nodes to node 1.
 {
 obj.SetActive(false);
 }
 foreach (GameObject obj in NodeObj02Connection) // Hides all the attached nodes to node 2.
 {
 obj.SetActive(false);
 }
 AMS.RemoveNode(NodeObj01); // Removes these nodes from the AMS's lists.
 AMS.RemoveNode(NodeObj02); // ^^
 if (NodeObj01Connection.Count > 0)
 {
 AMS.RemoveConnections(NodeObj01, NodeObj01Connection[0], this); // Removes both node's connections when
their object is destroyed.
 }
 if (NodeObj02Connection.Count > 0)
 {
 AMS.RemoveConnections(NodeObj02, NodeObj02Connection[0], this); // ^^
 }
 if (Node1Type == "Anchor")
 {
 AMS.RemoveAnchors(NodeObj01);
 }
 if (Node2Type == "Anchor")
 {
 AMS.RemoveAnchors(NodeObj02);
 }
 }
 public void OnEditMode() // Called once when put into edit mode
 {
 AssemblyManagementScript AMS = gUIScript.getMainAssembly().GetComponent<AssemblyManagementScript>();
 if (this.gameObject.activeInHierarchy == true) // If the gameObject is currently active in the scene.
 {
 if (Node1AssocitatedObject != null)

43 Alex Bury

 {
 AMS.UpdateTypeList(NodeObj01, Node1Type, "Standard"); // Must be called in this manner to ensure
that the UdateTypeList procedure recieves both sides of the joint one after another.
 AMS.UpdateTypeList(Node1AssocitatedObject, Node1Type, "Standard");
 }
 if (Node2AssocitatedObject != null)
 {
 AMS.UpdateTypeList(NodeObj02, Node2Type, "Standard");
 AMS.UpdateTypeList(Node2AssocitatedObject, Node2Type, "Standard");
 }
 }
 }

 public string GetNodeType(GameObject node) // Returns the type of node when passed the node.
 {
 if (node == NodeObj01)
 {
 if (Node1Type == "Pivot")
 {
 return "Pivot";
 }
 else if (Node1Type == "Anchor")
 {
 return "Anchor";
 }
 else if (Node1Type == "SplitJoint")
 {
 return "SplitJoint";
 }
 else
 {
 return "Standard";
 }
 }
 else if (node == NodeObj02)
 {
 if (Node2Type == "Pivot")
 {
 return "Pivot";
 }
 else if (Node2Type == "Anchor")
 {
 return "Anchor";
 }
 else if (Node2Type == "SplitJoint")
 {
 return "SplitJoint";
 }
 else
 {
 return "Standard";
 }
 }
 else
 {
 Debug.Log("Fatal Error: Node not found.");
 return null;
 }
 }

 public void InitialiseNodeTypes() // Is called once when the object is instantiated to setup the type of node.
 {
 Node1Type = "Standard";
 Node2Type = "Standard";
 }

 private void SetNodeType(string type, GameObject node, string oldType) // Sets the type of node
 {
 Material NewMaterial = (Material)this.GetType().GetField(type).GetValue(this); // Finds the material
associated with this type by name and assigns it to NewMaterial.
 node.GetComponentInChildren<MeshRenderer>().material = NewMaterial; // Assigns the relevant material to
the node.
 AssemblyManagementScript AMS = this.transform.parent.gameObject.GetComponent<AssemblyManagementScript>(); //
Finds the assembly management script.
 AMS.UpdateTypeList(node, type, oldType); // Tells the AMS to update it's lists.
 if (node == NodeObj01)

44 Alex Bury

 {
 Node1Type = type;
 }
 else if (node == NodeObj02)
 {
 Node2Type = type;
 }
 else
 {
 Debug.Log("Fatal Error: Node not found.");
 }
 }

 public void UpdateNodeType(GameObject node, string type) // Is called once upon clicking on a node to change
it's type.
 {
 string oldType;
 if (node == NodeObj01)
 {
 oldType = Node1Type;
 if (type == "Anchor")
 {
 if (type != Node1Type) // If its a different type, change the type.
 {
 SetNodeType(type, node, oldType); // Sets the status of this node
 foreach (GameObject otherObject in NodeObj01Connection)
 {
 NodeConnectionScript NCS =
otherObject.transform.parent.parent.gameObject.GetComponent<NodeConnectionScript>();
 NCS.SetNodeType(type, otherObject, oldType); // Sets the status of the other nodes
 }
 }
 else // If its the same type, revert to standard.
 {
 SetNodeType("Standard", node, oldType); // Resets the status of this node
 foreach (GameObject otherObject in NodeObj01Connection)
 {
 NodeConnectionScript NCS =
otherObject.transform.parent.parent.gameObject.GetComponent<NodeConnectionScript>();
 NCS.SetNodeType("Standard", otherObject, oldType); // Resets the status of the other nodes
 }
 }
 }
 else if (NodeObj01Connection.Count == 1) // If it's a pivot or split joint, but not an anchor.
 {
 if (type != Node1Type) // If a new type has been given.
 {
 SetNodeType(type, node, oldType); // Sets the status of this node
 NodeConnectionScript NCS =
NodeObj01Connection[0].transform.parent.parent.gameObject.GetComponent<NodeConnectionScript>();
 NCS.SetNodeType(type, NodeObj01Connection[0], oldType); // Sets the status of the other node to
the same
 Node1AssocitatedObject = NodeObj01Connection[0];
 }
 else // If the special type is to be removed.
 {
 SetNodeType("Standard", node, oldType); // Resets the status of this node
 NodeConnectionScript NCS =
NodeObj01Connection[0].transform.parent.parent.gameObject.GetComponent<NodeConnectionScript>();
 NCS.SetNodeType("Standard", NodeObj01Connection[0], oldType); // Resets the status of the other
node to the same
 Node1AssocitatedObject = null;
 }
 }
 else
 {
 if (type != "Standard" && type != "Anchor")
 {
 Debug.Log("Error: Pivots and split joints must only be between 2 nodes. Try Reconnecting them.");
 gUIScript.NotifyUser("Error: Pivots and split joints must only be between 2 nodes. Try
Reconnecting them.");
 }
 }
 }
 else if (node == NodeObj02)
 {

45 Alex Bury

 oldType = Node2Type;
 if (type == "Anchor")
 {
 if (type != Node2Type)
 {
 SetNodeType(type, node, oldType); // Sets the status of this node
 foreach (GameObject otherObject in NodeObj02Connection)
 {
 NodeConnectionScript NCS =
otherObject.transform.parent.parent.gameObject.GetComponent<NodeConnectionScript>();
 NCS.SetNodeType(type, otherObject, oldType); // Sets the status of the other nodes
 }
 }
 else
 {
 SetNodeType("Standard", node, oldType); // Resets the status of this node
 foreach (GameObject otherObject in NodeObj02Connection)
 {
 NodeConnectionScript NCS =
otherObject.transform.parent.parent.gameObject.GetComponent<NodeConnectionScript>();
 NCS.SetNodeType("Standard", otherObject, oldType); // Resets the status of the other nodes
 }
 }
 }
 else if (NodeObj02Connection.Count == 1) // If it's a pivot or split joint, but not an anchor.
 {
 if (type != Node2Type)
 {
 SetNodeType(type, node, oldType); // Sets the status of this node
 NodeConnectionScript NCS =
NodeObj02Connection[0].transform.parent.parent.gameObject.GetComponent<NodeConnectionScript>();
 NCS.SetNodeType(type, NodeObj02Connection[0], oldType); // Sets the status of the other node to
the same
 Node2AssocitatedObject = NodeObj02Connection[0];
 }
 else
 {
 SetNodeType("Standard", node, oldType); // Resets the status of this node
 NodeConnectionScript NCS =
NodeObj02Connection[0].transform.parent.parent.gameObject.GetComponent<NodeConnectionScript>();
 NCS.SetNodeType("Standard", NodeObj02Connection[0], oldType); // Resets the status of the other
node to the same
 Node2AssocitatedObject = null;
 }
 }
 else if (type != "Standard" && type != "Anchor")
 {
 Debug.Log("Error: Pivots and split joints must only be between 2 nodes. Try Reconnecting them.");
 gUIScript.NotifyUser("Error: Pivots and split joints must only be between 2 nodes. Try Reconnecting
them.");
 }
 }
 else
 {
 Debug.Log("Fatal Error: Node not found.");
 }
 }
 public void ClearAllLists()
 {
 NodeObj01Connection.Clear();
 NodeObj02Connection.Clear();
 } // Clears the list of connections for each nodes

 private static int LinearSearch(List<GameObject> list, GameObject SearchFor) // A linear search of a given list
for a given object. Returns -1 if not present.
 {
 if (list.Count != 0)
 {
 for (int i = 0; i < list.Count; i++)
 {
 if (list[i] == SearchFor)
 {
 return i;
 }
 }
 }

46 Alex Bury

 return -1;
 }

 public IEnumerator ClearConnectionList(GameObject node) // Clears all the attached nodes from this node.
 {
 if (node == NodeObj01)
 {
 NodeObj01Connection.Clear();
 }
 else if (node == NodeObj02)
 {
 NodeObj02Connection.Clear();
 }
 else
 {
 Debug.Log("Fatal Error: Node not found.");
 }
 yield return null;
 }

 public IEnumerator UpdateConnection(GameObject node, GameObject ConnectedNode, bool isConnected) // Updates the
NodeObjXXConnection variable when a node in the scene is conencted to or removed from another node.
 {
 int locationIndex;
 if (node == NodeObj01)
 {
 if (isConnected == true) // If the nodes are connected
 {
 if ((LinearSearch(NodeObj01Connection, ConnectedNode) == -1) && (ConnectedNode != node)) // Checks
that the node isn't already connected and that the node isnt itself.
 {
 NodeObj01Connection.Add(ConnectedNode); // Adds the other node to this node's connection list.
 }
 }
 else // If the nodes are not connected
 {
 if (NodeObj01Connection.Count != 0)
 {
 locationIndex = LinearSearch(NodeObj01Connection, ConnectedNode); // Find the location of the
node in the list of nodes
 if (locationIndex != -1) // If the node is present in the list of nodes
 {
 NodeObj01Connection.RemoveAt(locationIndex); // Remove the node
 NodeObj01Connection.TrimExcess(); // Tidy the list.
 }
 }
 }
 }
 else if (node == NodeObj02)
 {
 if (isConnected == true) // If the nodes are connected
 {
 if ((LinearSearch(NodeObj02Connection, ConnectedNode) == -1) && (ConnectedNode != node)) // Checks
that the node isn't already connected and that the node isnt itself.
 {
 NodeObj02Connection.Add(ConnectedNode);
 }
 }
 else // If the nodes are not connected
 {
 if (NodeObj02Connection.Count != 0)
 {
 locationIndex = LinearSearch(NodeObj02Connection, ConnectedNode); // Find the location of the
node in the list of nodes
 if (locationIndex != -1) // If the node is present in the list of nodes
 {
 NodeObj02Connection.RemoveAt(locationIndex); // Remove the node
 NodeObj02Connection.TrimExcess(); // Tidy the list
 }
 }
 }
 }
 else
 {
 Debug.Log("Fatal Error: node not found.");
 }

47 Alex Bury

 yield return null;
 }
 public List<GameObject> GetNodeList(GameObject node) // Returns a list of connected nodes given a specific
node.
 {
 List<GameObject> nodeList = new List<GameObject>();
 if (node == NodeObj01)
 {
 nodeList = NodeObj01Connection;
 }
 else if (node == NodeObj02)
 {
 nodeList = NodeObj02Connection;
 }
 else
 {
 Debug.Log("ERROR: Node not found.");
 nodeList = null;
 }
 return nodeList;
 }

 public List<GameObject> getConnectionList() // Provides a list of all the directly connected GameObjects which are
connected through nodes.
 {
 List<GameObject> objList = new List<GameObject>();
 if (Node1Type != "Pivot" && Node1Type != "SplitJoint") // Ignores any pivots or split joints as these are
ignored in the graph traversal.
 {
 for (int x = 0; x < NodeObj01Connection.Count; x++)
 {
 objList.Add(NodeObj01Connection[x].transform.parent.parent.gameObject); // Add the placeable object
which is parent of the other node
 }
 }
 if (Node2Type != "Pivot" && Node2Type != "SplitJoint") // Ignores any pivots or split joints as these are
ignored in the graph traversal.
 {
 for (int x = 0; x < NodeObj02Connection.Count; x++)
 {
 objList.Add(NodeObj02Connection[x].transform.parent.parent.gameObject); // Add the placeable object
which is parent of the other node
 }
 }
 return objList;
 }

 public void OnObjectLoaded() // Called manually to initialise the the nodes in the AssemblyMangementScript
after its main assembly has been loaded
 {
 AssemblyManagementScript assemblyManagementScript =
this.gameObject.transform.parent.gameObject.GetComponent<AssemblyManagementScript>(); // Gets the current version of
the MainAssembly object and therefore the most current instance of the AssemblyManagementScript.
 assemblyManagementScript.UpdateNodeList(gameObject, NodeObj01, NodeObj02);
 OnEditMode();
 }
}

3.3.4 StructEleScript

This class is of type MonoBehaviouir and is attached to each structure element gameObject. It contiains object-
specific procedures and so scales the rectangle to meet the node at either end.

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class StructEleScript : MonoBehaviour
{
 public GameObject NodeObj01; // These variables are public as they are assigned in the Editor
 public GameObject NodeObj02;
 public GameObject Rectangle;

 private Vector3 NodePoint01;
 private Vector3 NodePoint02;

48 Alex Bury

 private Vector3 rotation;
 private GameObject mainAssemblyObject;
 private AssemblyManagementScript assemblyManagementScript;
 private BoxCollider boxCollider;

 void OnEnable() // This is called when the object is enabled in the hierarchy
 {
 mainAssemblyObject = GameObject.Find("MainAssembly");
 assemblyManagementScript = mainAssemblyObject.GetComponent<AssemblyManagementScript>();
 boxCollider = Rectangle.GetComponent<BoxCollider>();
 if ((NodeObj01 == null) || (NodeObj02 == null))
 {
 Debug.Log("ERROR: Variable has null value."); // This error should never be reached providing that this
object is set up correctly within the editor.
 }
 }

 public void UpdateLocalPosition() // Makes the rectangle meet the two nodes at either end.
 {
 NodePoint01 = NodeObj01.transform.position;
 NodePoint02 = NodeObj02.transform.position;
 float RectangleScale = Rectangle.transform.localScale.x;
 Rectangle.transform.position = new Vector3((NodePoint02.x+NodePoint01.x)/2,(NodePoint02.y +
NodePoint01.y)/2,(NodePoint02.z + NodePoint01.z)/2); // Sets the position of the rectangle. This is inherited by
the box collider.
 if (NodePoint01.x <= NodePoint02.x) // Different conditions are required depending on which is lower because
the tan function does not accout for in which direction the rotation is.
 {
 rotation = new Vector3(Mathf.Rad2Deg * Mathf.Atan((NodePoint01.y - NodePoint02.y) /
Mathf.Sqrt(Mathf.Pow(NodePoint01.z - NodePoint02.z, 2) + Mathf.Pow(NodePoint02.x - NodePoint01.x, 2))), 90 +
Mathf.Rad2Deg * Mathf.Atan((NodePoint01.z - NodePoint02.z) / (NodePoint02.x - NodePoint01.x)), 0);
 }
 else
 {
 rotation = new Vector3(-Mathf.Rad2Deg * Mathf.Atan((NodePoint01.y - NodePoint02.y) /
Mathf.Sqrt(Mathf.Pow(NodePoint01.z - NodePoint02.z, 2) + Mathf.Pow(NodePoint02.x - NodePoint01.x, 2))), 90 +
Mathf.Rad2Deg * Mathf.Atan((NodePoint01.z - NodePoint02.z) / (NodePoint02.x - NodePoint01.x)), 0);
 }
 Rectangle.transform.rotation = Quaternion.Euler(rotation); // Sets the rotation of the rectangle.
 boxCollider.transform.rotation = Quaternion.Euler(rotation); // Sets the rotation of the box collider
attached to the rectangle
 Rectangle.transform.localScale = new Vector3(RectangleScale, RectangleScale,
Mathf.Sqrt(Mathf.Pow((NodePoint02.x - NodePoint01.x),2) + Mathf.Pow((NodePoint01.y - NodePoint02.y),2) +
Mathf.Pow((NodePoint01.z - NodePoint02.z), 2))); // Sets the scale of the rectangle
 boxCollider.transform.localScale = new Vector3(RectangleScale, RectangleScale,
Mathf.Sqrt(Mathf.Pow((NodePoint02.x - NodePoint01.x), 2) + Mathf.Pow((NodePoint01.y - NodePoint02.y), 2) +
Mathf.Pow((NodePoint01.z - NodePoint02.z), 2))); // Sets the scale of the box collider
 }
}

3.3.5 ProjectileScript

This class is of type MonoBehaviouir and is attached to each projectile gameObject. It contiains object-specific
procedures and so makes sure that the box follows either node at each side.

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using UnityEngine.UI;

public class ProjectileScript : MonoBehaviour
{

 private Vector3 Displacement;
 private Vector3 InitialPosition;
 private Vector3 Velocity;
 private Vector3 InitialVelocity;
 private float Speed;
 private Vector3 Acceleration;
 private Vector3 Force;
 private bool simulating;
 private NodeConnectionScript NCS;
 private GameObject Canvas;
 private GUIScript gUIScript;
 private Vector3 Node1ExpectedPosition;
 private Vector3 Node2ExpectedPosition;

49 Alex Bury

 private AssemblyManagementScript AMS;
 private float StartTime;
 private GraphScript GS;
 private GUIScript gUIS;
 private Rigidbody RB;
 private bool ShowOnReadouts;

 public GameObject Rectangle;
 public GameObject NodeHolder;
 public GameObject NodeObj01;
 public GameObject NodeObj02;

 private void OnEnable() // Is called every time the object is enabled.
 {
 GS = GameObject.Find("/Canvas/GraphingPanel1").GetComponent<GraphScript>();
 Node1ExpectedPosition = NodeObj01.transform.position; // A position that the node is known to have been at.
 Node2ExpectedPosition = NodeObj02.transform.position;
 NCS = this.gameObject.GetComponent<NodeConnectionScript>(); // Gets the projectile's nodeConnectionScript.
 Canvas = GameObject.Find("Canvas"); // Finds the canvas gameobject
 gUIScript = Canvas.GetComponent<GUIScript>(); // Sets the GUIScript component attached to the canvas to a
variable.
 simulating = false; //The projectile can only be loaded when the program isnt simulating.
 AMS = gUIScript.getMainAssembly().GetComponent<AssemblyManagementScript>(); // Gets the
AssemblyManagementScript which is attached to the current MainAssembly returned by GUIScript.
 AMS.UpdateProjectilesList(this.gameObject, true); // Adds this projectile to the AMS's list of projectiles.
 GUIScript.OnSimulate += OnSimulation; // Subscribes the OnSimulation procedure to the OnSimulate trigger
event attached to the GUIScript.
 GUIScript.OnSimulateEnd += OnEnd; // Subscribes the OnEnd procedure to the OnSimulateEnd trigger attached to
the GUIScript.
 }

 private void OnSimulation() // Is called by the OnSimulate event on the GUIScript.
 {
 if (this.gameObject.activeInHierarchy == true) // If this gameobject is currently being used.
 {
 simulating = true; // This projectile is part of the simulation
 InitialPosition = Rectangle.transform.position; // Sets the initial position of this object to allow the
future calculation of displacement.
 InitialVelocity = new Vector3(0, 0, 0);
 gUIS = GameObject.Find("Canvas").GetComponent<GUIScript>();
 RB = this.gameObject.transform.parent.gameObject.GetComponent<Rigidbody>(); // Locates the rigidbody
attached to the projectile's subassembly.
 }
 }

 private void OnEnd() // Is called by the OnSimulationEnd event on the GUIScript
 {
 simulating = false;
 }

 public void UpdateLocalPosition() //Updates the projectile's and other node's position to account for the moved
node.
 {
 AMS = gUIScript.getMainAssembly().GetComponent<AssemblyManagementScript>(); // Retrieves the most recent
instance of the mainAssembly and its ManagementScript.
 if (NodeMoved(NodeObj01) == true) // If NodeObj01 is the one that has been moved.
 {
 if (NCS.getNodeObjConnection(2).Count > 0) //if the node is connected to anything.
 {
 AMS.RemoveConnections(NodeObj02, NCS.getNodeObjConnection(2)[0], NCS); // Breaks the connections of
the other node. The connections for the NodeObj01 will have alreay been broken at this stage hence why they dont need
to be broken here.
 }
 Rectangle.transform.position = new Vector3(NodeObj01.transform.position.x, NodeObj01.transform.position.y,
NodeObj01.transform.position.z + 0.25f);
 NodeObj02.transform.position = new Vector3(NodeObj01.transform.position.x, NodeObj01.transform.position.y,
NodeObj01.transform.position.z + 0.5f);
 }
 else if (NodeMoved(NodeObj02) == true) // If NodeObj02 is the one that has been moved.
 {
 if (NCS.getNodeObjConnection(1).Count > 0) //if the node is connected to anything.
 {
 AMS.RemoveConnections(NodeObj01, NCS.getNodeObjConnection(1)[0], NCS); // Breaks the connections of
the other node. The connections for the NodeObj02 will have alreay been broken at this stage hence why they dont need
to be broken here.
 }

50 Alex Bury

 Rectangle.transform.position = new Vector3(NodeObj02.transform.position.x, NodeObj02.transform.position.y,
NodeObj02.transform.position.z - 0.25f);
 NodeObj01.transform.position = new Vector3(NodeObj02.transform.position.x, NodeObj02.transform.position.y,
NodeObj02.transform.position.z - 0.5f);
 }
 else
 {

 }
 Node1ExpectedPosition = NodeObj01.transform.position; // Stores the location of both nodes after they've
been moved.
 Node2ExpectedPosition = NodeObj02.transform.position;
 }

 private bool NodeMoved(GameObject node) // Checks if a given node has been moved out of place.
 {
 if (node == NodeObj01)
 {
 if (NodeObj01.transform.position == Node1ExpectedPosition) // If the node has been moved out of its last
know position by the curser.
 {
 return false;
 }
 else
 {
 return true;
 }
 }
 else if (node == NodeObj02)
 {
 if (NodeObj02.transform.position == Node2ExpectedPosition) // If the node has been moved out of its last
know position by the curser.
 {
 return false;
 }
 else
 {
 return true;
 }
 }
 else
 {
 Debug.Log("Fatal Error: Node not found!");
 return false;
 }
 }

 private void OnDisable() // Is called upon this object being disabled (Including its parents)
 {
 GUIScript.OnSimulate -= OnSimulation; // Unsubscribes the OnSimulation procedure to the OnSimulate
trigger event attached to the GUIScript.
 GUIScript.OnSimulateEnd -= OnEnd; // Unsubscribes the OnEnd procedure to the OnSimulateEnd trigger
attached to the GUIScript.
 AMS.UpdateProjectilesList(this.gameObject, false); // Tells the current AssemblyManagementScript to remove
this projectile from its list of projectiles.
 }

 public float GetDisplacement(char Direction) // Returns the Displacement for a given direction of the
projectile.
 {
 switch (Direction)
 {
 case 'x':
 return (Displacement.x);
 case 'y':
 return (Displacement.y);
 case 'z':
 return (Displacement.z);
 default:
 Debug.Log("Fatal Error: Direction not found");
 return 0;
 }
 }

 public float GetVelocity(char Direction) // Returns the Velocity for a given direction of the projectile.
 {

51 Alex Bury

 switch (Direction)
 {
 case 'x':
 return (Velocity.x);
 case 'y':
 return (Velocity.y);
 case 'z':
 return (Velocity.z);
 default:
 Debug.Log("Fatal Error: Direction not found");
 return 0;
 }
 }

 public float GetAcceleration(char Direction) // Returns the Acceleration for a given direction of the
projectile.
 {
 switch (Direction)
 {
 case 'x':
 return (Acceleration.x);
 case 'y':
 return (Acceleration.y);
 case 'z':
 return (Acceleration.z);
 default:
 Debug.Log("Fatal Error: Direction not found");
 return 0;
 }
 }

 public float GetForce(char Direction) // Returns the Force for a given direction of the projectile.
 {
 switch (Direction)
 {
 case 'x':
 return (Force.x);
 case 'y':
 return (Force.y);
 case 'z':
 return (Force.z);
 default:
 Debug.Log("Fatal Error: Direction not found");
 return 0;
 }
 }

 private void FixedUpdate() // Called once per frame
 {
 if (simulating == true) // If the simulation is currently running
 {
 Displacement = new Vector3(Rectangle.transform.position.x - InitialPosition.x,
Rectangle.transform.position.y - InitialPosition.y, Rectangle.transform.position.z - InitialPosition.z); //
Calculates the displacement of the projectile at the time when it is called.
 Acceleration = (RB.GetPointVelocity(Rectangle.transform.position) - Velocity) / Time.fixedDeltaTime; //
Acceleration = change in velocity / time for 1 frame.
 Velocity = RB.GetPointVelocity(Rectangle.transform.position); // Gets the velocity of the point of this
object's rectangle within the ridgidbody attached to the parent
 Force = ((RB.mass * Acceleration)); // F = MA
 if (ShowOnReadouts == true) // If this projectile outputs it's values to the readout.
 {
 gUIScript.SetDisplacementText(Displacement);
 gUIScript.SetVelocityText(Velocity);
 gUIScript.SetAccelerationText(Acceleration);
 gUIScript.SetForceText(Force);
 }
 }
 }

 public void showReadouts(bool show) // Called to set the ShowReadouts variable.
 {
 ShowOnReadouts = show;
 }
}

3.3.6 SubAssemblyScript

52 Alex Bury

This class is of type MonoBehaviouir and is attached to the SubAssembly prefab. It enables the creation of pivots and
split joints between SubAssembly objects.

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class SubAssemblyScript : MonoBehaviour
{

 private List<Pivot> Pivots = new List<Pivot>();
 private List<SplitJoint> splitJoints = new List<SplitJoint>();
 private bool anchored;

 class Pivot // The Pivot class is used in the pivot list which is populated when creating subassembilies.
 {
 GameObject pivotPoint;
 GameObject foreignBody;
 public void setPivot(GameObject Obj, GameObject foreignObj)
 {
 pivotPoint = Obj;
 foreignBody = foreignObj;
 }
 public Vector3 getPivotPt()
 {
 Vector3 location = pivotPoint.transform.position;
 return location;
 }
 public Rigidbody getRidgidbody()
 {
 Rigidbody RB = foreignBody.GetComponent<Rigidbody>();
 return RB;
 }
 }

 class SplitJoint // The SplitJoint class is used in the SplitJoint list which is populated when creating
subassembilies.
 {
 GameObject SplitJointPoint;
 GameObject foreignBody;
 FixedJoint fixedJoint;
 public void setSplitJoint(GameObject Obj, GameObject foreignObj)
 {
 SplitJointPoint = Obj;
 foreignBody = foreignObj;
 }
 public Vector3 getSplitJointPt()
 {
 Vector3 location = SplitJointPoint.transform.position;
 return location;
 }
 public Rigidbody getRidgidbody()
 {
 Rigidbody RB = foreignBody.GetComponent<Rigidbody>();
 return RB;
 }
 public void setFixedJoint(FixedJoint FJ)
 {
 fixedJoint = FJ;
 }
 public FixedJoint getFixedJoint()
 {
 return fixedJoint;
 }
 }

 private void Start() // This is called on the start of the simulation or when the object is instantiated.
 {
 GUIScript.toggleEditMode += ClearLists;
 GUIScript.OnSimulate += OnSimulation;
 }

 public void AddSplitJoint(GameObject locationObj, GameObject foreignSubAssembly) // Adds the location of a given
split joint to the list of split joint clasees.
 {

53 Alex Bury

 SplitJoint split = new SplitJoint();
 split.setSplitJoint(locationObj, foreignSubAssembly);
 splitJoints.Add(split);
 }

 public void AddPivot(GameObject locationObj, GameObject foreignSubAssembly) // Adds the location of a given pivot
to the list of pivot classes.
 {
 Pivot pivot = new Pivot();
 pivot.setPivot(locationObj, foreignSubAssembly);
 Pivots.Add(pivot);
 }

 public void IsAnchored(bool set) // Sets if this subassembily is anchored or not.
 {
 anchored = set;
 }

 public void UsePhysics() // Sets up the pivots, split joints and anchors
 {
 Rigidbody subAssyRB = this.GetComponent<Rigidbody>();
 if (anchored == true)
 {
 subAssyRB.useGravity = false;
 subAssyRB.isKinematic = true;
 }
 else
 {
 subAssyRB.useGravity = true;
 subAssyRB.isKinematic = false;
 }
 foreach (Pivot obj in Pivots) // Sets up all the pivots attached to this SubAssembly.
 {
 ConfigurableJoint piv = this.gameObject.AddComponent<ConfigurableJoint>();
 piv.anchor = obj.getPivotPt();
 piv.connectedBody = obj.getRidgidbody();
 piv.xMotion = ConfigurableJointMotion.Locked;
 piv.yMotion = ConfigurableJointMotion.Locked;
 piv.zMotion = ConfigurableJointMotion.Locked;
 }
 foreach (SplitJoint obj in splitJoints)
 {
 FixedJoint Splt = this.gameObject.AddComponent<FixedJoint>(); // Split joints use fixed joint components
which is to be broken when the split joint breaks.
 Splt.connectedBody = obj.getRidgidbody();
 obj.setFixedJoint(Splt);
 }
 }

 public void ClearLists() // Is called by the toggleEditMode event within the GUIScript
 {
 Pivots.Clear();
 splitJoints.Clear();
 }

 public void OnSimulation() // Is called by the OnSimulate event within the GUIScript
 {
 foreach (SplitJoint Obj in splitJoints)
 {
 Destroy(Obj.getFixedJoint()); // Breaks the split joints when running the simulation.
 }
 }

}

3.3.7 CameraManagementScript

This class is of type MonoBehaviouir and is attached to the camera in the scene. It enables the movement of the
camera both whilst in edit mode and the tracking of the camera when running the simulation.

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class CameraManagementScript : MonoBehaviour

54 Alex Bury

{

 public GameObject ProjectileDropDown1; // These are public as they are manually assigned in the Editor.
 public GameObject ProjectileDropDown2;
 public GameObject ProjectileDropDown3;

 private GameObject MainCamera;
 private const int TransitionSpeed = 10;
 private bool CanSwitch;
 private ProjectileDropDownScript PDS1;
 private ProjectileDropDownScript PDS2;
 private ProjectileDropDownScript PDS3;

 private Vector3 TopPosition; // Ideally these would be declared as constants, however C# only allows C# native
types to be declated as a constant
 private Quaternion TopRotation;
 private Vector3 BottomPosition;
 private Quaternion BottomRotation;
 private Vector3 RightPosition;
 private Quaternion RightRotation;
 private Vector3 LeftPosition;
 private Quaternion LeftRotation;
 private Vector3 FrontPosition;
 private Quaternion FrontRotation;
 private Vector3 BackPosition;
 private Quaternion BackRotation;
 private Vector3 FreePosition;
 private Quaternion FreeRotation;
 private Vector3 initialPosition;
 private Quaternion initialRotation;
 const int borderWidth = 5;
 bool simulating;
 GameObject MainAssembly;
 AssemblyManagementScript AMS;
 float XMax = 0;
 float YMax = 0;
 float XMin = 0;
 float YMin = 0;
 List<GameObject> node;
 Vector3 TargetPos;

 private void Start() // This is called at the start of the execution of the program.
 {
 PDS1 = ProjectileDropDown1.GetComponent<ProjectileDropDownScript>(); // Locates the 3 projectile dd
scripts.
 PDS2 = ProjectileDropDown2.GetComponent<ProjectileDropDownScript>();
 PDS3 = ProjectileDropDown3.GetComponent<ProjectileDropDownScript>();

 MainCamera = GameObject.Find("CameraObject/MainCamera");

 CanSwitch = false; // Initially the simulation starts in simulation mode and therefore the camera cannot
switch immediately after startup.

 TopPosition = new Vector3(0, 10, 0);
 TopRotation = Quaternion.Euler(90, 90, 0);

 BottomPosition = new Vector3(0, -10, 0);
 BottomRotation = Quaternion.Euler(-90, -90, 0);

 LeftPosition = new Vector3(0, 0, 10);
 LeftRotation = Quaternion.Euler(0, -180, 0);

 RightPosition = new Vector3(0, 0, -10);
 RightRotation = Quaternion.Euler(0, 0, 0);

 FrontPosition = new Vector3(-10, 0, 0);
 FrontRotation = Quaternion.Euler(0, 90, 0);

 BackPosition = new Vector3(10, 0, 0);
 BackRotation = Quaternion.Euler(0, -90, 0);

 FreePosition = new Vector3(10, 10, 10);
 FreeRotation = Quaternion.Euler(45, 225, 0);

 GUIScript.toggleEditMode += OnEditMode; // Subscribes these procedures to the events within the GUIScript.
 GUIScript.toggleSimulationMode += OnSimulationMode;

55 Alex Bury

 GUIScript.OnSimulate += Simulate;
 GUIScript.OnSimulateEnd += OnSimulationEnd;
 }

 private void OnEditMode() // Is called by the toggleEditMode event.
 {
 CanSwitch = true;
 simulating = false;
 }

 private void OnSimulationMode() // Is called by the toggleSimulationMode event.
 {
 XMax = 0; // Resets the simulation camera's position.
 YMax = 0;
 XMin = 0;
 YMin = 0;
 StartCoroutine(FreeCam(FreePosition, FreeRotation, false)); // Moves the camera to free veiw.
 }

 private void OnSimulationEnd() // Is called by the OnSimulateEnd delegate
 {
 simulating = false;
 StartCoroutine(FreeCam(FreePosition, FreeRotation, false)); // Moves the camera back to free view position
 CanSwitch = false;
 }

 private void Update() // Update is called once per frame
 {
 if (Input.GetKeyDown("[7]")) // The square brackets around a number signify that these are numpad keys.
 {
 OrientTop();
 }
 if (Input.GetKeyDown("[1]"))
 {
 OrientBottom();
 }
 if (Input.GetKeyDown("[4]"))
 {
 OrientLeft();
 }
 if (Input.GetKeyDown("[6]"))
 {
 OrientRight();
 }
 if (Input.GetKeyDown("[2]"))
 {
 OrientFront();
 }
 if (Input.GetKeyDown("[8]"))
 {
 OrientBack();
 }
 if (Input.GetKeyDown("[5]"))
 {
 OrientFree();
 }
 }
 private IEnumerator Orient(Vector3 Position, Quaternion Rotation, bool leaveInState) // Orients the camera into
a plane and sets it to orthographic projection.
 {
 CanSwitch = false;
 MainCamera.GetComponent<Camera>().orthographic = false;
 while (Vector3.Distance(MainCamera.transform.position, Position) > 0.5f) // While the camera is at a
distance greater than 0.5 units, interpolate the camera from its current position to its target position. Without
this, the camera would never actually reach the point, it would just get closer to it at an increasingly slower rate.
 {
 MainCamera.transform.position = Vector3.Slerp(MainCamera.transform.position, Position, TransitionSpeed *
Time.deltaTime);
 MainCamera.transform.rotation = Quaternion.Slerp(MainCamera.transform.rotation, Rotation, TransitionSpeed
* Time.deltaTime);
 yield return new WaitForEndOfFrame(); // Must wait for end of frame to allow the interpolation to take
place.
 }
 MainCamera.GetComponent<Camera>().orthographic = true;
 MainCamera.transform.position = Position; // Sets the cameras position to the actual precise position.
 MainCamera.transform.rotation = Rotation;

56 Alex Bury

 CanSwitch = leaveInState;
 PDS1.RefreshNumberLocations(); // Tells the ProjectileDropdownScripts to update the location of their numbers
as they will now be outdated since the camera has moved.
 PDS2.RefreshNumberLocations();
 PDS3.RefreshNumberLocations();
 yield return 0;
 }

 private IEnumerator FreeCam(Vector3 Position, Quaternion Rotation, bool leaveInState) // Orients the camera in a
free-veiw mode and sets it to perspective projection.
 {
 CanSwitch = false;
 MainCamera.GetComponent<Camera>().orthographic = false;
 while (Vector3.Distance(MainCamera.transform.position, Position) > 1f) // While the camera is at a distance
greater than 1 unit, interpolate the camera from its current position to its target position. Without this, the camera
would never actually reach the point, it would just get closer to it at an increasingly slower rate.
 {
 MainCamera.transform.position = Vector3.Slerp(MainCamera.transform.position, Position, TransitionSpeed *
Time.deltaTime);
 MainCamera.transform.rotation = Quaternion.Slerp(MainCamera.transform.rotation, Rotation, TransitionSpeed
* Time.deltaTime);
 yield return new WaitForEndOfFrame(); // Must wait for end of frame to allow the interpolation to take
place.
 }
 MainCamera.transform.position = Position;
 MainCamera.transform.rotation = Rotation;
 CanSwitch = leaveInState;
 PDS1.RefreshNumberLocations(); // Tells the PDSs to update the location of their numbers as they will now be
outdated since the camera has moved.
 PDS2.RefreshNumberLocations();
 PDS3.RefreshNumberLocations();
 yield return 0;
 }

 public void Simulate() // Is called by the OnSimulate event attached to the GUIScript.
 {
 simulating = true;
 MainAssembly = GameObject.Find("MainAssembly");
 AMS = MainAssembly.GetComponent<AssemblyManagementScript>(); // Updates the instance of the
AssemblyManagementScript.
 node = AMS.getObjList();
 TargetPos = new Vector3(0, 0, 0);
 StartCoroutine(SimulateCam()); // Switches to the simulation camera
 }

 private IEnumerator SimulateCam() // Is used in simulations to ensure that all the nodes in the scene lie within
the frame of the camera.
 {
 MainCamera.transform.rotation = Quaternion.Euler(5, 180, 0);
 while (simulating == true)
 {
 for (int i = 0; i < node.Count; i++) // Iterates through all the nodes, comparing each with a minimum
and maximum to find the nodes with the minimum and maximum distance from the initial position.
 {
 if (node[i] != null)
 {
 Vector3 position = node[i].transform.position;
 if (position.x > XMax)
 {
 XMax = position.x;
 }
 else if (position.x < XMin)
 {
 XMin = position.x;
 }
 if (position.y > YMax)
 {
 YMax = position.y;
 }
 else if (position.y < YMin && position.y > 5)
 {
 YMin = position.y;
 }
 }
 }
 TargetPos.x = (XMin + XMax) / 2;

57 Alex Bury

 TargetPos.y = (YMin + YMax) / 2;
 TargetPos.z = (((XMax - XMin) / 2) + borderWidth) /
Mathf.Tan((MainCamera.GetComponent<Camera>().fieldOfView * Mathf.Deg2Rad) / 2);
 MainCamera.transform.position = Vector3.Slerp(TargetPos, this.transform.position, TransitionSpeed *
Time.deltaTime / 1000);
 yield return new WaitForSeconds(0.01f);
 yield return null;
 }
 yield return null;
 }

 public void OrientTop() // Orients the camera to the top.
 {
 if (CanSwitch == true)
 {
 StartCoroutine(Orient(TopPosition, TopRotation, true));
 }
 }

 private void OrientBottom() // Orients the camera to the bottom.
 {
 if (CanSwitch == true)
 {
 StartCoroutine(Orient(BottomPosition, BottomRotation, true));
 }
 }

 private void OrientLeft() // Orients the camera to the left.
 {
 if (CanSwitch == true)
 {
 StartCoroutine(Orient(LeftPosition, LeftRotation, true));
 }
 }

 private void OrientRight() // Orients the camera to the right.
 {
 if (CanSwitch == true)
 {
 StartCoroutine(Orient(RightPosition, RightRotation, true));
 }
 }

 private void OrientFront() // Orients the camera to the front.
 {
 if (CanSwitch == true)
 {
 StartCoroutine(Orient(FrontPosition, FrontRotation, true));
 }
 }

 private void OrientBack() // Orients the camera to the back.
 {
 if (CanSwitch == true)
 {
 StartCoroutine(Orient(BackPosition, BackRotation, true));
 }
 }

 private void OrientFree() // Orients the camera to the freeView position.
 {
 if (CanSwitch == true)
 {
 StartCoroutine(FreeCam(FreePosition, FreeRotation, true));
 }
 }
}

3.3.8 GraphScript

This class is of type MonoBehaviouir and is attached to each graph in the canvas. It enables the plotting of points on
a graph continuously while running a simulation. One of the graphs also manages the readouts.

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

58 Alex Bury

using System.Linq;
using UnityEngine.UI;

public class GraphScript : MonoBehaviour
{

 private GameObject GraphBackground;
 private float GraphSizeX;
 private float GraphSizeY;
 private float GraphScaleX;
 private float GraphScaleY;
 private float Difference;
 private List<GameObject> Point = new List<GameObject>();
 private List<GameObject> RedundantPoint = new List<GameObject>();
 private Vector2 InitialBackgroundPosition;
 private Vector2 InitialBackgroundSize;
 private ProjectileScript ProjScript;
 private RectTransform BackgroundRect;
 private string ProjAttribute;
 private float StartTime;
 private bool Simulating;
 private char Axis;
 private RectTransform GraphMaskWindow;
 private GUIScript gUIScript;

 public GameObject Title; // These variables are public because they are assigned in the UnityEditor.
 public GameObject PlottingPointPrefab;
 public GameObject ElapsedTimeText;

 private void OnEnable() // Called by UnityEngine when this GameObject is set as active in the higherarchy.
 {
 Title.SetActive(false);
 gUIScript = GameObject.Find("/Canvas").GetComponent<GUIScript>();
 Simulating = false;
 GUIScript.OnSimulate += StartPlotting; // Subscribes the StartPlotting procedure to the OnSimulate event.
 GUIScript.OnSimulateEnd += OnEnd; // Subscribes the OnEnd procedure to the OnSimulateEnd event.
 GraphMaskWindow = this.gameObject.transform.GetChild(0).gameObject.GetComponent<RectTransform>(); // Locates
the Mask component (a window which only renders the portion of the background that lies inside it)
 GraphBackground = this.gameObject.transform.GetChild(0).GetChild(0).gameObject; // Locates background on which
the points are plotted
 BackgroundRect = GraphBackground.GetComponent<RectTransform>();
 InitialBackgroundPosition = BackgroundRect.position;
 GraphScaleX = 40.0f;
 GraphScaleY = 20.0f;
 InitialBackgroundSize = new Vector2(GraphMaskWindow.rect.width - 10, GraphMaskWindow.rect.height - 10); //
Sets the width of the veiwable graph.
 ProjAttribute = "Displacement"; // Sets the default attribute
 Axis = 'x'; // Sets the default axis
 }

 private void OnDisable()// Called by UnityEngine when this GameObject is set as inactive in the higherarchy.
 {
 GUIScript.OnSimulate -= StartPlotting; // Unsubscribes from event.
 GUIScript.OnSimulateEnd -= OnEnd;
 }

 public void OnEnd() // Is called by the OnSimulateEnd event attached to the GUIScript.
 {
 Simulating = false;
 }

 private void PlotPoint(float Value, float time) // Plots a point given its value (y axis) and time (x axis)
 {
 GameObject NewPoint;
 if ((time * GraphScaleX) / GraphSizeX > 1) // If the time is greater than the current width of the box.
 {
 float change = ((time * GraphScaleX) / GraphSizeX) * GraphScaleX; // Calculates the change in size
 Difference = Difference + change; // Calculates the difference in size from original
 BackgroundRect.sizeDelta = new Vector2(Difference, 0); // Resizes the graph background to allow the new
points to be plotted.
 BackgroundRect.transform.Translate(new Vector2((-change / 2), 0)); // Moves the background to the left by
half the difference in width
 GraphSizeX = BackgroundRect.rect.width; // Sets the new width of the graph
 RedundantPoint = RedundantPoint.Concat(LocateRedundantPoints(time * GraphScaleX)).ToList(); //Gets all the
new points outside the veiw window which can be re used and adds them to the list of redundant points.
 }

59 Alex Bury

 if (Mathf.Abs((Value * GraphScaleY) / (GraphSizeY / 2)) > 1)
 {
 GraphScaleY = ScaleVertically(GraphScaleY * (1 / Mathf.Abs((Value * GraphScaleY) / (GraphSizeY / 2))),
GraphScaleY);
 }
 if (RedundantPoint.Count != 0) // If ther are any points outside the view window.
 {
 NewPoint = RedundantPoint[0]; // Take the redundant point from the front of the list
 RedundantPoint.Remove(NewPoint); // Remove this point from the front of the redundant points list.
 RedundantPoint.TrimExcess(); // Shuffle the list along to fill the empty space.
 }
 else
 {
 NewPoint = Instantiate(PlottingPointPrefab); // Creates a new point if there are no redundant points
available.
 NewPoint.transform.SetParent(this.gameObject.transform.GetChild(0).GetChild(0)); // Makes the new point
a child of the graphing background.
 Point.Add(NewPoint); // Adds this newly instantiated point to the list of points
 }
 RectTransform PointTransform = NewPoint.GetComponent<RectTransform>(); // Locates the Trasform component of
the point.
 Vector2 Position = new Vector2((time * GraphScaleX), (Value * GraphScaleY)); // Calculates the point's new
position
 PointTransform.anchoredPosition = Position; // Sets the points new position
 }

 private float ScaleVertically(float newScale, float currentScale) // Is called to change the vertical scale of
the graph
 {
 for (int i = 0; i < Point.Count; i++) // Iterates through all the points on the graph
 {
 RectTransform PntTrn = Point[i].GetComponent<RectTransform>(); // Gets the transform attached to each
point
 PntTrn.anchoredPosition = new Vector2(PntTrn.anchoredPosition.x, (PntTrn.anchoredPosition.y /
currentScale) * newScale); // Calculates the new position of the point and moves it there.
 }
 return newScale;
 }

 private List<GameObject> LocateRedundantPoints(float currentTime) // Returns a list of points which lie outside
of the mask window
 {
 List<GameObject> RP = new List<GameObject>(); // A new list to be populated with new redundant points
 List<GameObject> CP = new List<GameObject>(Point); // A new list to be populated with all the points
 for (int i = 0; i < Point.Count; i++) // Iterates through Point and removes any from CP if it is also
already known to be a redundant point.
 {
 if (RedundantPoint.Contains(Point[i])) // If the point is already known to be redundant
 {
 CP.Remove(Point[i]); // Remove the point from the list of points to check.
 }
 }
 CP.TrimExcess(); // Tidies up the CP list, removing any blank spaces.
 for (int i = 0; i < CP.Count; i++) // Iterates through the CP list
 {
 RectTransform RT = Point[i].GetComponent<RectTransform>(); // Gets the transform attached to each point
 if (RT.anchoredPosition.x < (currentTime - InitialBackgroundSize.x)) // If the point lies outside the
mask (Cannot be seen)
 {
 RP.Add(CP[i]); // Add it to the list of newly redundant points.
 }
 }
 return RP; // Return the list of newly redundant points.
 }

 public void StartPlotting() // Initialises the plotting procerdure
 {
 Title.GetComponentInChildren<Text>().text = ProjAttribute;
 Title.SetActive(true);
 ClearGraph();
 Simulating = true;
 Difference = 0; // The change in size of the graph horizontally.
 StartCoroutine(PlotPoints());
 }
 private void ClearGraph() // Clears the graph and resets the background position and size.
 {

60 Alex Bury

 foreach (GameObject pt in Point)
 {
 Destroy(pt); // Destroys the point gameObject
 }
 Point.Clear();
 RedundantPoint.Clear();
 GraphBackground.GetComponent<RectTransform>().position = InitialBackgroundPosition;
 BackgroundRect.sizeDelta = new Vector2(0, 0); // Resets the graph background's size to its initial size.
 GraphSizeX = GraphMaskWindow.rect.width;
 GraphSizeY = GraphMaskWindow.rect.height;
 }

 private IEnumerator PlotPoints() // Plots the points on the graph corresponding to this class's Projectile,
Attribute and axis.
 {
 StartTime = Time.fixedTime; // Sets the time that the simulation started to a variable to allow the
calculation of time since the simulation started.
 Debug.Log("Plotting Points on Graph " + this.gameObject.name[13]);
 yield return new WaitForEndOfFrame(); // Must wait until this script has it's Projectile Script assigned.
 if (ProjScript != null)
 {
 while (Simulating == true)
 {
 switch (ProjAttribute)
 {
 case "Displacement":
 PlotPoint(ProjScript.GetDisplacement(Axis), Time.fixedTime - StartTime);
 break;
 case "Velocity":
 PlotPoint(ProjScript.GetVelocity(Axis), Time.fixedTime - StartTime);
 break;
 case "Acceleration":
 PlotPoint(ProjScript.GetAcceleration(Axis), Time.fixedTime - StartTime);
 break;
 case "Force":
 PlotPoint(ProjScript.GetForce(Axis), Time.fixedTime - StartTime);
 break;
 default:
 Debug.Log("Fatal Error: Mode not found");
 break;
 }
 yield return new WaitForSeconds(0.1f);
 yield return null;
 }
 }
 else
 {
 Debug.Log("Error " + this.gameObject.name[13]);
 }
 Title.SetActive(false);
 yield return null;
 }

 public void SetProjectile(GameObject projectile) // Sets the projectile refernce to a given one.
 {
 if (projectile != null)
 {
 ProjScript = projectile.GetComponent<ProjectileScript>();
 }
 else
 {
 Debug.Log("Fatal Error");
 }
 }

 public void SetAttribute(GameObject dropdown) // Sets the attribute based on the graph's attributes dropdown's
value.
 {
 ProjAttribute =
dropdown.GetComponent<Dropdown>().options[dropdown.GetComponent<Dropdown>().value].text.ToString();
 }

 public void SetAxis(GameObject dropdown) // Sets the axis based on the graph's axis dropdown's value.
 {
 Debug.Log(dropdown.GetComponent<Dropdown>().captionText.ToString());

61 Alex Bury

 Axis = dropdown.GetComponent<Dropdown>().options[dropdown.GetComponent<Dropdown>().value].text.ToString()[0];
// Finds the first char of the currently selected string.
 }

 public IEnumerator setElapsedTimeText() // Used by one of the graphs to update the ElapsedTimeText as the
simulation is running
 {
 Text ELTtext = ElapsedTimeText.GetComponent<Text>();
 while (Simulating == true)
 {
 ELTtext.text = (Mathf.Round((Time.fixedTime - StartTime) * 100) / 100).ToString(); // Rounds the time
to 2 sf and displays it.
 yield return null;
 }
 yield return null;
 }
}

3.3.9 ProjectileDropDownScript

This class is of type MonoBehaviouir and is attached to each dropdown to select projectiles in the canvas. It keeps
the graphs up to date on which projectile they should be plotting and enables all the projectiles in the scene to be
displayed with numbers to show which one is which.

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using UnityEngine.UI;
using UnityEngine.EventSystems;

public class ProjectileDropDownScript : MonoBehaviour, IPointerExitHandler, IPointerEnterHandler
{
 public GameObject ProjectileNumber; // These variables are public as they are assigned in the Editor.
 public GameObject CameraObject;

 private GameObject MainAssembly;
 private Camera MainCamera;
 private List<GameObject> CurrentProjectileNumbers = new List<GameObject>();
 private GUIScript gUIScript;
 private Dropdown DD;
 private bool DisplayingNumbers;
 private GameObject CurrentProjectile;
 private List<GameObject> ProjectilesList = new List<GameObject>();
 private List<string> ProjectileLabel = new List<string>();

 private void ShowProjectileNumbers(List<GameObject> ProjectilesList) // This displays numbers over each
projectile in the scene to show which is which.
 {
 for (int i = 0; i < ProjectilesList.Count; i++)
 {
 if (ProjectilesList[i] != null)
 {
 GameObject Num = Instantiate(ProjectileNumber); // Creates a new number gameobject.
 Num.transform.SetParent(gUIScript.gameObject.transform); // Moves the number under the canvas so
the camera can render it.
 Num.GetComponent<RectTransform>().anchoredPosition =
MainCamera.WorldToScreenPoint(ProjectilesList[i].transform.GetChild(1).transform.position); // Locates the point of
the box attached to the projectile and puts the projectile number over it.
 Num.GetComponentInChildren<Text>().text = i.ToString(); // Sets the text of the projectile number.
 CurrentProjectileNumbers.Add(Num); // To keep track of the projectile numbers for when they need to
be removed.
 DisplayingNumbers = true;
 }
 }
 }

 private void OnEnable() // Called upon the object being made active in the hierarchy.
 {
 GUIScript.OnSimulate += OnSimulation;
 MainCamera = CameraObject.GetComponent<Camera>();
 gUIScript = GameObject.Find("Canvas").GetComponent<GUIScript>();
 DD = this.gameObject.GetComponent<Dropdown>();
 int oldValue = DD.value; // Gets the value of the projectile drop down before.
 UpdateDropdownOptions();
 HideProjectileNumbers();

62 Alex Bury

 if (ProjectilesList.Count > 0)
 {
 CurrentProjectile = ProjectilesList[oldValue];
 UpdateGraphs();
 }
 }

 public void OnSimulation() // Called by the OnSimulate event attached to the GUIScript.
 {
 UpdateDropdownOptions();
 UpdateGraphs();
 HideProjectileNumbers();
 }

 private void HideProjectileNumbers() // Hides the numbers over each projectile
 {
 foreach (GameObject Num in CurrentProjectileNumbers)
 {
 Destroy(Num);
 }
 CurrentProjectileNumbers.Clear();
 DisplayingNumbers = false;
 }

 public void OnPointerExit(PointerEventData eventData) // Called by UnityEngine when the pointer leaves the drop
down box.
 {
 HideProjectileNumbers();
 if (ProjectilesList.Count > DD.value)
 {
 CurrentProjectile = ProjectilesList[DD.value];
 }
 UpdateGraphs();
 }

 public void OnPointerEnter(PointerEventData eventData) // Called by UnityEngine when the pointer enters the drop
down box.
 {
 ProjectilesList.Clear();
 UpdateDropdownOptions();
 }

 private void UpdateDropdownOptions() // Gets all the pivots in the scene and displays them in the drop down
 {
 DD.ClearOptions(); // Resets the dropdown listings ready to be reloaded.
 ProjectilesList.Clear();
 ProjectileLabel.Clear();
 MainAssembly = gUIScript.getMainAssembly();
 ProjectilesList = new
List<GameObject>(MainAssembly.GetComponent<AssemblyManagementScript>().getProjectileList());
 ShowProjectileNumbers(ProjectilesList);
 for (int i = 0; i < ProjectilesList.Count; i++)
 {
 ProjectileLabel.Add("Projectile " + i.ToString()); // Adds each projectile option to a list of projectile
options
 }
 DD.AddOptions(ProjectileLabel); // Adds this new list to the options in the projectile drop down.
 DD.RefreshShownValue();
 if (ProjectileLabel.Count > 0)
 {
 CurrentProjectile = ProjectilesList[DD.value]; // Sets the current projectile to the one that was
selected before.
 }
 }

 public void RefreshNumberLocations() // Used to refresh the location of the numbers if the camera is moved.
 {
 if (DisplayingNumbers == true)
 {
 HideProjectileNumbers();

ShowProjectileNumbers(gUIScript.getMainAssembly().GetComponent<AssemblyManagementScript>().getProjectileList());
 }
 }

 public void UpdateGraphs() // Tells the graph which projectile's points to plot.

63 Alex Bury

 {
 ProjectilesList.TrimExcess();
 if (ProjectilesList.Count != 0)
 {
 if (this.gameObject.transform.parent.name == "GraphingPanel1Settings") // If this is attached to the
dropdown under the settings panel for graphing panel 1.
 {
 GraphScript GS = GameObject.Find("/Canvas/GraphingPanel1").GetComponent<GraphScript>();
 GS.SetProjectile(CurrentProjectile);
 }
 else if (this.gameObject.transform.parent.name == "GraphingPanel2Settings") // If this is attached to the
dropdown under the settings panel for graphing panel 2.
 {
 GraphScript GS = GameObject.Find("/Canvas/GraphingPanel2").GetComponent<GraphScript>();
 GS.SetProjectile(CurrentProjectile);
 }
 else // If this is attached to the dropdown for the readouts.
 {
 ProjectileScript PS;
 foreach (GameObject proj in ProjectilesList)
 {
 if (proj != null)
 {
 PS = proj.GetComponent<ProjectileScript>();
 PS.showReadouts(false); // Tells all the projectile scripts to not sent their values to the
readouts.
 }
 }
 PS = CurrentProjectile.GetComponent<ProjectileScript>();
 PS.showReadouts(true); // Tells the currently selected projectile to send its values to the readouts.
 }
 }
 }
}

3.3.10 SaveLoadManagement

This class a regular C# script which contains 3 classes, the first of which which manages the conversion between a
saveable JSON file and a MainAssembly GameObject and vice versa. The second and third classes are serialiasable
abstractions of MainAssembly GameObjects and AssemblyElements respectively.

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using System.IO;
using System;
using UnityEngine.UI;

public static class SaveLoadManagement
{

 public static void SaveAssembly(GameObject MainAssemblyObject, string fileName) //Saves the current MainAssembly
to file given a filename.
 {
 AssemblyData AD = ConvertToSerializableClass(MainAssemblyObject); // Converts the MainAssembly gameObject
into an AssemblyData class which is an abstraction and can be serialised.
 string Jsontxt = JsonUtility.ToJson(AD); // Converts this AssemblyData class into JSON format and puts it
in a string.
 StreamWriter stream = new StreamWriter(Application.persistentDataPath + "/" + fileName + ".phys"); // Creates
a new file at the given location, or overwrites a current file.
 stream.Write(Jsontxt); // Populates this file with the JSON string.
 stream.Close(); // Closes the file.
 }

 public static GameObject LoadAssembly(string fileName) // Loads a saved MainAssembly given its filename.
 {
 StreamReader stream = new StreamReader(Application.persistentDataPath + "/" + fileName + ".phys"); //
Initialises a new stream from the given file location.
 string JsonTxt = stream.ReadToEnd(); // Emptys the entire contents of the file into a string.
 stream.Close(); // Closes the file.
 AssemblyData AD = JsonUtility.FromJson<AssemblyData>(JsonTxt); // Creates a new AssemblyData class using the
json string.
 GameObject newMainAssembly = ConvertFromSerializableClass(AD); // Converts this class into a gamobject class
and instantiates it into the scene.
 return newMainAssembly; // Returns the newMainAssembly Object.

64 Alex Bury

 }

 private static AssemblyData ConvertToSerializableClass(GameObject Assy) // Generates an AssemblyData instance for
a given MainAssembly object.
 {
 AssemblyData MainAssy = new AssemblyData(); // Creates a new instance of the MainAssemblyClass class which is
ready to be populated.
 int i = 0;
 foreach (Transform assyEle in Assy.transform) // Iterates through the children of the main assebly (IE: the
assembly elements). This sets up each structure element's serialisable class.
 {
 NodeConnectionScript NCS = assyEle.GetComponent<NodeConnectionScript>(); // Locates the
NodeConnectionScript component attached to the current child of the MainAssemblyClass
 AssemblyElement AssyElemnt = new AssemblyElement(); // Creates a new instance of the AssemblyElement class
which is ready to be populated.
 if (assyEle.name == "Structure Element(Clone)")
 {
 AssyElemnt.prefab = Resources.Load("Prefabs/Structure Element") as GameObject; // Locates the
structure element prefab.
 }
 else if (assyEle.name == "Projectile(Clone)")
 {
 AssyElemnt.prefab = Resources.Load("Prefabs/Projectile") as GameObject; // Locates the projectile
prefab.
 }
 else if (assyEle.name == "Track(Clone)")
 {
 AssyElemnt.prefab = Resources.Load("Prefabs/Track") as GameObject; // Locates the track prefab.
 }
 else
 {
 Debug.Log("Add alternative conditions here");
 }
 AssyElemnt.Node1Type = NCS.GetNodeType(NCS.NodeObj01);
 AssyElemnt.Node2Type = NCS.GetNodeType(NCS.NodeObj02);
 AssyElemnt.Node1Position = NCS.NodeObj01.transform.position;
 AssyElemnt.Node2Position = NCS.NodeObj02.transform.position;
 MainAssy.AssemblyElements[i] = AssyElemnt; // Adds this element to the array of elements within the
new main assembly.
 i = i + 1;
 }
 return MainAssy;
 }

 private static GameObject ConvertFromSerializableClass(AssemblyData mainAssy) // Returns a new MainAssembly
object when given an AssemblyData instanvce.
 {
 GameObject newMainAssembly = GameObject.Instantiate(Resources.Load("Prefabs/MainAssembly") as GameObject);
// Creates the new MainAssemblyClass object which is to be parented by the assebly elements.
 newMainAssembly.name = "MainAssembly"; // Renames this object "MainAssembly"
 GUIScript gUIScript = GameObject.Find("Canvas").GetComponent<GUIScript>(); // Locates the GUIScript and puts
a reference of it in gUIScript
 gUIScript.setMainAssembly(newMainAssembly); //Tells the GUIScript to set the current mainAssembly to the new
instantiated one.
 foreach (AssemblyElement AssyElemnt in mainAssy.AssemblyElements) // Iterates through each assembly element
which is in the main assembly
 {
 if (AssyElemnt.prefab != null) // If this array element is populated.
 {
 try
 {
 GameObject newAssyEle = GameObject.Instantiate(AssyElemnt.prefab); // Instantiates a new object
in the scene using the prefab referenced in AssyElemnt.
 newAssyEle.transform.parent = newMainAssembly.transform; // Sets the parent of this new
placeable object to the new MainAssembly
 NodeConnectionScript NCS = newAssyEle.GetComponent<NodeConnectionScript>(); // Locates the
NodeConnectionScript which is attached to the newly instantiated assembly element.
 NCS.NodeObj01.transform.position = AssyElemnt.Node1Position; // Moves the nodes in this
assembly to their proper positions using the data stored in the AssyElemnt class.
 NCS.NodeObj02.transform.position = AssyElemnt.Node2Position; // ^^
 NCS.setTempNodeType(NCS.NodeObj01, AssyElemnt.Node1Type); // Sets the temporary node type of
each node for later reference when setting up the node types.
 NCS.setTempNodeType(NCS.NodeObj02, AssyElemnt.Node2Type); // ^^
 NCS.OnObjectLoaded(); // Calls the OnObjectLoaded subprocedure attached to this newly
instantiated assembly element.

65 Alex Bury

 newMainAssembly.GetComponent<AssemblyManagementScript>().AddSceneObject(newAssyEle); // Adds
this assembly element to the MainAssembilie's list of scene objects.
 if (newAssyEle.name == "Structure Element(Clone)") // Locates the object specific script and
tells it to update it's local position (move the body of the object between the nodes).
 {
 StructEleScript SES = newAssyEle.GetComponent<StructEleScript>();
 SES.UpdateLocalPosition();
 }
 else if (newAssyEle.name == "Projectile(Clone)")
 {
 ProjectileScript PJS = newAssyEle.GetComponent<ProjectileScript>();
 PJS.UpdateLocalPosition();
 }
 else if (newAssyEle.name == "Track(Clone")
 {
 TrackScript TRS = newAssyEle.GetComponent<TrackScript>();
 TRS.UpdateLocalPosition();
 }
 else
 {
 Debug.Log("Fatal Error: Assembly Element Script Not found.");
 }
 }
 catch
 {
 gUIScript.NotifyUser("Error: Unable to load assembly. Incompatable version.");
 }
 }
 else // if the end of the array has been reached.
 {
 }
 }
 return newMainAssembly;
 }

}

[Serializable]
public class AssemblyData
{
 public AssemblyElement[] AssemblyElements = new AssemblyElement[100]; // An array must be used as a list is a
generic data type which cannot be serialised by unity's built in serialiser.
}

[Serializable]
public class AssemblyElement
{
 public GameObject prefab; // These must be public to allow the JsonUtility to access them.
 public string Node1Type; // The type of node1
 public string Node2Type; // The type of node2
 public Vector3 Node1Position; // The position of the node1
 public Vector3 Node2Position; // The position of the node2
}

3.3.11 SaveScript

This script contains a class of type MonoBehaviour which is attached to the SaveWindow GUI object and interfaces
between this and the SaveLoadManagement classes.

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using UnityEngine.UI;
using System.IO;
using System.Text.RegularExpressions;

public class SaveScript : MonoBehaviour
{

 public GameObject TextInputBox; // These are public as they have been used to reference the UI elements in the
Unity IDE, which saves inefficient find functions.
 public GameObject ScrollView;
 public GameObject FileButtonPrefab;
 const int ButtonHeight = 60;

 GameObject canvas;

66 Alex Bury

 GUIScript gUIScript;

 private void OnEnable()
 {
 canvas = GameObject.Find("Canvas"); // Finds the canvas gameobject in the scene
 gUIScript = canvas.GetComponent<GUIScript>();
 UpdateFileList();
 }

 private void UpdateFileList() // This procedure presents all the files as buttons in a scrollVeiw object in the
scene.
 {
 foreach (Transform child in ScrollView.transform.GetChild(0).GetChild(0))
 {
 GameObject.Destroy(child.gameObject); // Makes sure that there are no buttons in the scroll view
before it starts adding them.
 }
 Vector2 previousAnchorMin = new Vector2(0, 1); // Sets the location for the first anchor max.
 DirectoryInfo directory = new DirectoryInfo(Application.persistentDataPath + "/"); // Locates the directory
and stores it in a variable.
 FileInfo[] listOfFiles = directory.GetFiles(); // Gets all the files in the directory and stores them in an
arry
 List<FileInfo> files = new List<FileInfo>(); // Initialises a new list which will contain just the files
with the .phys extension.
 files.Clear(); // Makes sure this list is ready to be used.
 foreach (FileInfo file in listOfFiles)
 {
 if (file.Extension == ".phys") // Filters out any unwanted files.
 {
 files.Add(file); // Adds all the files with the .phys extension to the files list.
 }
 }
 ScrollView.transform.GetChild(0).GetChild(0).gameObject.GetComponent<RectTransform>().sizeDelta = new
Vector2(0, ButtonHeight * files.Count); // Sets the height of the container for all the buttons based on how many
there are and their individual heights.
 foreach (FileInfo file in files)
 {
 GameObject NewButton = Instantiate(FileButtonPrefab); // Creates a new button using the prefab.
 NewButton.transform.SetParent(ScrollView.transform.GetChild(0).GetChild(0)); // Makes the new button a
child of the container.
 NewButton.transform.GetChild(0).gameObject.GetComponent<Text>().text =
Path.GetFileNameWithoutExtension(file.Name); // sets the text on the button to the name of the file.
 RectTransform RT = NewButton.GetComponent<RectTransform>(); // Gets the RectTransform component attached
to the button so its position can be set.
 RT.anchorMax = new Vector2(1, previousAnchorMin.y); // Puts the top of this button at the bottom of the
button above it.
 RT.anchorMin = new Vector2(0, RT.anchorMax.y - (1.0f / files.Count)); // Sets the bottom of the button at
a fixed distance away from the top of the button.
 RT.offsetMax = new Vector2(-5, -5); // Adds a border around the button so they're not all touching.
 RT.offsetMin = new Vector2(5, 5); // Adds a border around the button so they're not all touching.
 NewButton.GetComponent<Button>().onClick.AddListener(delegate { OnItemClicked(NewButton); }); // Attaches
the OnItemClicked procedure to the buttons OnClick event so that it calls this function when clicked.
 previousAnchorMin = RT.anchorMin; // Sets this buttons minimum point for the next button to use.
 }
 }

 public void OnSubmit() // This is called directly by the OnClick event attached to the submit button. It takes
the text from the input box and saves the main assembly to that filename.
 {
 string input = TextInputBox.GetComponent<InputField>().text;
 if (input != "") // Makes sure that the input field isnt blank. If a duplicate filename is provided the
files will be overwritten.
 {
 SaveLoadManagement.SaveAssembly(gUIScript.getMainAssembly(), input); // Tells SaveLoadManagement to
save the assembly stored in the MainAssembly variable attached to the GUIScript under the name of the input text.
 UpdateFileList(); // Rearranges the files to account for this.
 this.gameObject.SetActive(false); // Hides the save window after a successful save.
 }
 else // The input is invalid and an error message should be shown.
 {
 gUIScript.NotifyUser("Error: Invalid Input");
 Debug.Log("Invalid input");
 }
 }

67 Alex Bury

 public void OnCancel() // This is called directly by the OnClick event attached to the Cancel button. It closes
the save window.
 {
 this.gameObject.SetActive(false);
 }

 public void OnItemClicked(GameObject CalledFrom) // This is called directly by the OnClick event attached to
any button representing a file. It passes itself and then it's text is used to identify a file.
 {
 string text = CalledFrom.transform.GetChild(0).gameObject.GetComponent<Text>().text.ToString(); // Finds the
text on the button
 TextInputBox.GetComponent<InputField>().text = text; //Presents this text in the TextInputBox for easy
saving to an assembly in development.
 }
}

3.3.12 LoadScript

This script contains a class of type MonoBehaviour which is attached to the Load window GUI object and interfaces
between this and the SaveLoadManagement classes.

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using UnityEngine.UI;
using System.IO;
using System.Text.RegularExpressions;

public class LoadScript : MonoBehaviour
{

 public GameObject TextInputBox; // These are public as they have been used to reference the UI elements in the
Unity IDE, which saves on inefficient find functions.
 public GameObject ScrollView;
 public GameObject FileButtonPrefab;

 const int ButtonHeight = 60;
 List<string> FileNames = new List<string>();
 GameObject canvas;
 GUIScript gUIScript;

 private void OnEnable() // Called upon the object being enabled in the higherarchy.
 {
 canvas = GameObject.Find("Canvas"); // Finds the canvas gameobject in the scene
 gUIScript = canvas.GetComponent<GUIScript>();
 UpdateFileList();
 }

 private void UpdateFileList() // This procedure presents all the files as buttons in a scrollVeiw object in the
scene.
 {
 foreach (Transform child in ScrollView.transform.GetChild(0).GetChild(0))
 {
 GameObject.Destroy(child.gameObject); // Makes sure that there are no buttons in the scroll view
before it starts adding them.
 }
 Vector2 previousAnchorMin = new Vector2(0, 1); // Sets the location for the first anchor max.
 DirectoryInfo directory = new DirectoryInfo(Application.persistentDataPath + "/"); // Locates the directory
and stores it in a variable.
 FileInfo[] listOfFiles = directory.GetFiles(); // Gets all the files in the directory and stores them in an
arry
 List<FileInfo> files = new List<FileInfo>(); // Initialises a new list which will contain just the files
with the .phys extension.
 files.Clear(); // Makes sure this list is ready to be used.
 FileNames.Clear();
 foreach (FileInfo file in listOfFiles)
 {
 if (file.Extension == ".phys") // Filters out any unwanted files.
 {
 files.Add(file); // Adds all the files with the .phys extension to the files list.
 FileNames.Add(file.Name);
 }
 }

68 Alex Bury

 ScrollView.transform.GetChild(0).GetChild(0).gameObject.GetComponent<RectTransform>().sizeDelta = new
Vector2(0, ButtonHeight * files.Count); // Sets the height of the container for all the buttons based on how many
there are and their individual heights.
 foreach (FileInfo file in files)
 {
 GameObject NewButton = Instantiate(FileButtonPrefab); // Creates a new button using the prefab.
 NewButton.transform.SetParent(ScrollView.transform.GetChild(0).GetChild(0)); // Makes the new button a
child of the container.
 NewButton.transform.GetChild(0).gameObject.GetComponent<Text>().text =
Path.GetFileNameWithoutExtension(file.Name); // sets the text on the button to the name of the file.
 RectTransform RT = NewButton.GetComponent<RectTransform>(); // Gets the RectTransform component attached
to the button so its position can be set.
 RT.anchorMax = new Vector2(1, previousAnchorMin.y); // Puts the top of this button at the bottom of the
button above it.
 RT.anchorMin = new Vector2(0, RT.anchorMax.y - (1.0f / files.Count)); // Sets the bottom of the button at
a fixed distance away from the top of the button.
 RT.offsetMax = new Vector2(-5, -5); // Adds a border around the button so they're not all touching.
 RT.offsetMin = new Vector2(5, 5); // Adds a border around the button so they're not all touching.
 NewButton.GetComponent<Button>().onClick.AddListener(delegate { OnItemClicked(NewButton); }); // Attaches
the OnItemClicked procedure to the buttons OnClick event so that it calls this function when clicked.
 previousAnchorMin = RT.anchorMin; // Sets this buttons minimum point for the next button to use.
 }
 }

 public void OnSubmit() // This is called directly by the OnClick event attached to the submit button. It takes
the text from the input box and saves the main assembly to that filename.
 {
 string input = TextInputBox.GetComponent<InputField>().text;
 if (input != "") // Makes sure that the input field isnt blank. If a duplicate filename is provided the
files will be overwritten.
 {
 if (FileNames.Contains(input + ".phys"))
 {
 Destroy(gUIScript.getMainAssembly());
 GameObject MainAssembly = SaveLoadManagement.LoadAssembly(input); // Tells SaveLoadManagement to
save the assembly stored in the MainAssembly variable attached to the GUIScript under the name of the input text.
 MainAssembly.GetComponent<AssemblyManagementScript>().ReconstructConnections();
 bool switchBackToSimulation = false;
 if (gUIScript.isEditing() == false) // If it's in edit mode.
 {
 MainAssembly.GetComponent<AssemblyManagementScript>().OnEditMode();
 switchBackToSimulation = true;
 }
 gUIScript.setMainAssembly(MainAssembly); // Tells the GUIScript to update its MainAssembly
reference to the most recent one.
 UpdateFileList(); // Rearranges the files to account for this.
 if (switchBackToSimulation == true) // Only needs to reset the simulation if its not in edit mode
becuase the subassembilies will be generated automatically when they switch back to simulation mode.
 {
 gUIScript.SimulationMode(); // Resets the simulations which re-builds the subassembilies (or in
this case ,creates them).
 }
 MainAssembly.GetComponent<AssemblyManagementScript>().ShowAllSpecialNodes();
 this.gameObject.SetActive(false); // Hides the save window after a successful load.
 }
 else
 {
 Debug.Log("Error: file does not exist.");
 gUIScript.NotifyUser("Error: file does not exist.");
 }
 }
 else // The input is invalid and an error message should be shown.
 {
 Debug.Log("Invalid input");
 gUIScript.NotifyUser("Error: Invalid Input");
 }
 }

 public void OnCancel() // This is called directly by the OnClick event attached to the Cancel button. It closes
the save window.
 {
 this.gameObject.SetActive(false);
 }

 public void OnItemClicked(GameObject CalledFrom) // This is called directly by the OnClick event attached to
any button representing a file. It passes itself and then it's text is used to identify a file.

69 Alex Bury

 {
 string text = CalledFrom.transform.GetChild(0).gameObject.GetComponent<Text>().text.ToString(); // Finds the
text on the button
 TextInputBox.GetComponent<InputField>().text = text; //Presents this text in the TextInputBox for easy
saving to an assembly in development.
 }
}

3.4 Graphical User Interface

Below is the GUI displayed when in simulation mode. This is the mode that the program starts in when it is run.

Next, the program while in edit mode.

70 Alex Bury

The next two photos are of the save and load windows respectively.

The notice window.

71 Alex Bury

And finally, the program while running with the graphs plotting.

72 Alex Bury

Section 4 – Testing

4.0 Introduction
My testing strategy for Physim is to perform all the tests on the final or near-final build of the program as all
of the different systems are reliant on each other for the function of the program to be as desired. This
also means that there is overlap between the tests and that it will likely be immediately obvious if there is
an issue. Due to the nature of the program, with effectively infinate possabilities because of the simulation
builder, it is virtually impossible for me to show every combination of test. Therefore I will show the
systems working with both complex and simple random structures to ensure that the majority of cases are
tested.
NOTE : All the testing videos contain commentary so please ensure that your audio is working.

4.1 The Simulation Builder
The following tests for section 1 are found in the video at this URL:
https://youtu.be/3-W88qNMrdI
All the following tests are to be completed in Edit Mode unless otherwise stated.

Test
No

Test
Description

Action of
Input

Expected Result Actual Result Video
Timestamp

1.1 Spawn a
placeable
assembly
element into
the scene and
move it
around

Click any of
the placeable
object
buttons in
Edit mode and
move mouse
over the
scene then
click right
mouse.

The placeable object follows
the curser and is released
when the left mouse is
clicked.

The placeable object follows
the curser and is released
when the left mouse is
clicked.

00:00

1.2 Click on nodes
on assembly
elements to
move them
around

In edit mode,
after selecting
‘Build’ under
the mode
section, click
on the end of
a placeable
object so that
the node is
highlighted

The placable object follows
the node and either scales
or moves to meet the node
at one of its ends.

The placable object follows
the node and either scales
or moves to meet the node
at one of its ends.

00:38

1.3 Connect
multiple nodes
together

Click on a
node to move
it around (like
test 1.2), then
drag the node
over the
position of
another node.

The node snaps to the node
you’re hovering over and so
share its position. In
addition, both
NodeConnectionScripts
attached to each object
have their connected node
lists updated.

The node snaps to the node
you’re hovering over and so
share its position. In
addition, both
NodeConnectionScripts
attached to each object
have their connected node
lists updated.

01:28

1.4 Set the types
of nodes

In edit mode,
click on the
mode
dropdown

The colour of the node
changes depending on the
type of connection (Pivot ⇨

The colour of the node
changes depending on the
type of connection (Pivot ⇨

2:20

73 Alex Bury

and choose
‘Select Pivot’,
‘Select Split
Joint’ and
Select Anchor
to change the
mode. Then
click on the
positions of
nodes in the
scene.

yellow, Split Joint ⇨ red,
Anchor ⇨ Black)
In Addition, the Node Type
variable attached to each
Node Connection Script
changes depending on the
node type. A connection
between anything other
than 2 nodes will not
become a pivot or split joint
as these are strictly
restricted for connections
between 2 objects. Also, the
AssemblyManagementScript
attached to the main
assembly object will be
made aware of this change
and updates its lists to do
so.

yellow, Split Joint ⇨ red,
Anchor ⇨ Black)
In Addition, the Node Type
variable attached to each
Node Connection Script
changes depending on the
node type. A connection
between anything other
than 2 nodes will not
become a pivot or split joint
as these are strictly
restricted for connections
between 2 objects. Also, the
AssemblyManagementScript
attached to the main
assembly object is made
aware of this change and
updates its lists to do so.

1.5 Convert all the
components
of the main
assembly into
subassembilies

After creating
a complex
structure,
click the
‘Simulation
Mode’ button
to go back
into
simulation
mode.

The current Main Assembly
will be cloned and set to
inactive for future use. Then
the program goes through
the placeable objects via a
Depth-First graph traversal
algorithm using the
connected nodes between
them. Any pivots or split
joint nodes will be ignored
and their connection will be
disregarded. All the objects
in this graph traversal will
be put into a newly
instantiated sub assembly
object. Any still unvisited
nodes/structures at this
point will be put into their
own subassembily as the
first was. Then Hinge/ Fixed
joint components will be
added to the respective
subassembilies and the
other subassembly will be
set as the foreign body of
the component.

The current Main Assembly
is cloned and set to inactive
for future use. Then the
program goes through the
placeable objects via a
Depth-First graph traversal
algorithm using the
connected nodes between
them. Any pivots or split
joint nodes will be ignored
and their connection will be
disregarded. All the objects
in this graph traversal will
be put into a newly
instantiated sub assembly
object. Any still unvisited
nodes/structures at this
point will be put into their
own subassembily as the
first was. Then Hinge/ Fixed
joint components are added
to the respective
subassembilies and the
other subassembly will be
set as the foreign body of
the component.

07:22

1.6 Delete
components

After creating
a structure,
select ‘delete’
mode whilst
in edit mode
then click the
centre of the
gameObject.

The object is destroyed and
its connections are
removed.

The object is destroyed and
its connections are
removed.

10:20

74 Alex Bury

4.2 Saving And loading
The following tests for section 2 are found in the video at this URL:
https://youtu.be/um_nIQSfcyA

Test No Test
Description

Action of Input Expected Result Actual Result Video
Timestamp

2.1 Open save &
load windows

Click on ‘save’
button in Edit
mode and ‘load’
button in
simulation
mode.

The save panel opens when
the save button is clicked
and the load panel when
the load button is clicked.

The save panel opens
when the save button
is clicked and the load
panel when the load
button is clicked.

00:00

2.2 Show current
files

Done
automatically
when save and
load windows
are opened

Files in the persistant data
path file are represented as
buttons in a scroll veiw,
providing their extension is
‘.phys’.

Files in the persistant
data path file are
represented as
buttons in a scroll
veiw, providing their
extension is ‘.phys’.

00:21

2.3 Select a file Click on a
button on the
save or load
panel

The name of the file
appears in the text input
box at the top of the
window.

The name of the file
appears in the text
input box at the top of
the window.

00:59

2.4 Save a file Click on the
‘submit’ button
in the save
window with
valid text in the
text input box.

A file in the persistant data
path location should be
created under the name
given with the .phys
extension.

A file in the persistant
data path location is
created under the
name given with the
.phys extension.

02:02

2.5 Attempting to
save a file with
no name

Click on the
‘submit’ button
in the save
window with no
text in the text
input box

An error message is
displayed.

An error message is
displayed.

2:48

2.6 Loading a file
while in
Simulation
Mode

Click on the
‘Load’ button
whilst in
simulation
mode, then click
on a button,
then click
submit.

An active main assembly is
instantiated which
immediately uses physics
and another inactive main
assembly is created as a
future reference.

An active main
assembly is
instantiated which
immediately uses
physics and another
inactive main
assembly is created as
a future reference.

02:58

2.7 Attempting to
load a file
which does not
exist.

Click on the
‘Load’ button
whilst in
simulation
mode then click
submit with the
text input box
empty.

An error message is
displayed

An error message is
displayed

03:18

75 Alex Bury

2.8 Checking a
simulation has
loaded
correctly

Load a
simulation, as in
2.6.

The NodeConnection lists
contained within the node
connection scripts attached
to each placeable object
are populated with the
correct nodes, the types
are correct and the
Assembly Management
Script is made aware of the
types

The NodeConnection
lists contained within
the node connection
scripts attached to
each placeable object
are populated with
the correct nodes, the
types are correct and
the Assembly
Management Script is
made aware of the
types

03:37

2.9 Leading on
from 2.8,
checking the
simulation
works as
expected

Load a
simulation, as in
2.6.

The placeable elements are
correctly assigned to
subassembilies, pivots, split
joints and anchors are
assigned and set to the
right place and setup
correctly.

The placeable
elements are correctly
assigned to
subassembilies, pivots,
split joints and
anchors are assigned
and set to the right
place and setup
correctly.

04:30

2.10 Similar to 2.7,
although in edit
mode

Click on the
‘Load’ button
whilst in edit
mode then click
submit with the
text input box
empty.

A single active main
assembly is instantiated
which can immediately be
modified. The
NodeConnection lists
contained within the node
connection scripts attached
to each placeable object
are populated with the
correct nodes, the types
are correct and the
Assembly Management
Script is made aware of the
types

A single active main
assembly is
instantiated which can
immediately be
modified. The
NodeConnection lists
contained within the
node connection
scripts attached to
each placeable object
are populated with
the correct nodes, the
types are correct and
the Assembly
Management Script is
made aware of the
types

04:51

4.3 Camera Management
The following tests for section 3 are found in the video at this URL:
https://youtu.be/xy-oRgPe7nA

Test No Test Description Action of Input Expected Result Actual Result Video
Timestamp

3.1 Test Edit mode
camera

Whilst in ‘edit
mode’ click
numpad
1,2,4,5,6,7,8

The camera pans to the
angles listed in the table
in design section 2.3 in
perspective mode, then
switchs to orthographic
view afterwards for
each angle other than
freeview (num 5).

The camera pans to the
angles listed in the table
in design section 2.3 in
perspective mode, then
switchs to orthographic
view afterwards for each
angle other than freeview
(num 5).

00:00

76 Alex Bury

3.2 Check camera
returns to free
view position
when switching
from edit mode
to simulation
mode.

Whilst in edit
mode after
switching
camera to any
other position
that freeview
(num 5), click
the
“Simulation
mode”.

The camera switches to
perspective view then
pans to free view angle.

The camera switches to
perspective view then
pans to free view angle.

01:31

3.3 Check camera
correctly moves
to fit all the
projectiles/nodes
in the scene
within its frame
whilst simulating

Load an
assembly into
the scene
which contains
a moving
element which
has a large
displacement,
then click
“start” to
begin

The camera moves to
the side and as the
system moves, the
camera should move
backwards to ensure
that the entire system
remains within the
scene.

The camera moves to the
side and as the system
moves, the camera
should move backwards
to ensure that the entire
system remains within
the scene.

01:48

3.4 Check that you
can only move
the camera wilst
in edit mode

Select ‘edit
mode’ and use
the numpad
keys as in 3.1.
Then switch to
simulation
mode and
press the same
numpad keys
once again.
Finally, click
‘start’ and
press the keys
for a third
time.

The camera pans
corresponding to the
tabe in design section
2.3 whilst in edit mode,
and the camera remains
in its current position
whilst in simulation
mode or whilst running
the simulation.

The camera pans
corresponding to the tabe
in design section 2.3
whilst in edit mode,
however you can still
move the camera whilst
in simulation mode after
running the simulation

02:07

3.5 Check that the
movement of the
camera in
Simulation Mode
has been fixed
(see corrective
action below
table)

Select ‘edit
mode’ and use
the numpad
keys as in 3.1.
Then switch to
simulation
mode and
press the same
numpad keys
once again.
Finally, click
‘start’ and
press the keys
for a third
time.

The camera pans
corresponding to the
tabe in design section
2.3 whilst in edit mode,
and the camera remains
in its current position
whilst in simulation
mode or whilst running
the simulation.

The camera pans
corresponding to the tabe
in design section 2.3
whilst in edit mode, and
the camera remains in its
current position whilst in
simulation mode or whilst
running the simulation.
The camera does no
longer move when
pressing numpad keys
after running a simulation

02:41

Test 3.4 Corrective Action

77 Alex Bury

Change the value of the boolean CanSwitch to false from true within the OnSimulationEnd() procedure in
the Camera Management Script, and change OrientFree(); to StartCoroutine(FreeCam(FreePosition,
FreeRotation, false)); which will ignore the state of CanSwitch, and will set CanSwitch’s value to false.

4.4 Running A Simulation
The following tests for section 4 are found in the video at this URL:
https://youtu.be/xhgEIFHm1TQ

Test No Test Description Action of Input Expected Result Actual Result Video
Timestamp

4.1 Check the time
starts counting

Click on the
‘start’ button

The time starts counting The time starts
counting

00:00

4.2 Check the split
joint breaks

Click on the
‘start’ button

The split joints break
their connections

The split joints break
their connections

00:17

4.3 Check both
graphs start
plotting points

Click on the
‘start’ button

Both graphs show red
dots plotted against time

Graph 2 starts plotting
however graph 1 does
not.

00:38

4.4 Check both
graphs now start
plotting points
(See corrective
action below the
table)

Click on the
‘start’ button

Both graphs show red
dots plotted against time

Both graphs show red
dots plotted against
time

01:07

4.6 Check you
cannot reset the
simulation, load
a simulation or
go into edit
mode whilst the
simulation is
running.

Click on the
‘start’ button,
then click on
‘Reset’ , ‘Edit
Mode’ and
‘Load’

An error message is
displayed telling the user
that they must stop the
simulation before they
can Reset the simulation,
load a simulation or go
back into edit mode.

An error message is
displayed telling the
user that they must
stop the simulation
before they can Reset
the simulation, load a
simulation or go back
into edit mode.

01:29

Test 4.3 Corrective Action
Add the line yield return new WaitForEndOfFrame(); Into the Coroutine PlotPoints() within the
GraphScript class before it does a presence check on the ProjScript variable as the ProjectileDropDownScript
class must be allowed time to update this variable to it’s correct value.

4.5 The Graphing System
The following tests for section 5 are found in the video at this URL:
https://youtu.be/6KVvwvz3lUg

Test
No

Test Description Action of Input Expected Result Actual Result Video
Timestamp

5.1 Check that all
projectiles are
shown as an
option in the
projectile drop
downs.

Add a projectile
to the scene, then
click on a
projectile drop
down, then add
another, then
click on the
projectile drop
down again.

The first time there is
1 projectile listed, the
second time there is
two.

The first time there is 1
projectile listed, the
second time there is
two.

00:00

5.2 Check that
projectiles are
shown as the

Move the curser
over a projectile

The projectiles have a
number presented in
from of them which

The projectiles have a
number presented in
from of them which

00:00

78 Alex Bury

correct one
when hovering
over the
projectile drop
down box.

drop down, then
move it away.

corresponds to their
position in the
Assembly
Management Script’s
list of projectiles.
When the curser is
moved away, these
numbers are hidden.

corresponds to their
position in the Assembly
Management Script’s
list of projectiles. When
the curser is moved
away, these numbers
are hidden.

5.3 Check that the
graph stops
plotting points
when the
simulation stops

Run a simulation
while plotting
points, then stop
the simulation

The graph plots points
when the simulation is
running then stops
plotting points when
the simulation stops,
but the points remain
in their position.

The graph plots points
when the simulation is
running then stops
plotting points when
the simulation stops,
but the points remain in
their position.

00:58

5.4 Check that the
graph moves to
the right
correctly and
that the point
recycling system
is running

Run a simulation
and wait for the
points to reach
the other side.

The graph moves to
the left to create room
for the new points,
which are taken from
the back of the graph
off the screen.

The graph moves to the
left to create room for
the new points, which
are taken from the back
of the graph off the
screen.

01:15

5.5 Check that the
vertical scale of
the graph shrinks
when points of a
greater
magnitude than
the graph need
to be plotted

Run the
simulation, with
one of the
projectiles having
a very large
displacement
which is shown on
the graph.

The graph scales
vertically to ensure
that all plotted points
are visible within the
graphing window.

The graph scales
vertically to ensure that
all plotted points are
visible within the
graphing window.

02:08

5.6 Check that the
correct points
are plotted from
the correct
projectile on the
correct graph

Create a
simulation which
contains multiple
projectiles, and in
edit mode, set the
Projectile,
attribute and Axis
boxes to different
projectiles and
run the
simulation.

The first graph plots
the points of the first
projectile using the
attribute given on the
appropriate axis, and
the second does the
same projectile.

The first graph plots the
points of the first
projectile using the
attribute given on the
appropriate axis, and
the second does the
same for its set
projectile.

02:52

79 Alex Bury

Section 5 - Evaluation

5.1 Achived Objectives

Below I have responded to each objective individually and reflected on third party feeback for each
objective.

5.1.1 Does the simulation demonstrate the ideas of projectiles and simple harmonic motion through a
single solution with the versitility to observe any of displacement, velocity, acceleration and force while
the simulation is running?
The graphing system allows the choice of plotting between displacement,
velocity, acceleration and force acting on any projectile against time in the
scene in which the system is moved by the acceleration due to gravity. While
the simulation is running the graphs plot accurate displacement against time
curves (which are sine/ cosine curves, pictured to the right). Mr Mumford
stated that “ Projectile simulation is useful as an extension to the pendulum
SHM theory. As a teacher I could use this as students could predict the graph.”
[Appendix B 1], and when asked if he thinks his students could understand what
the simulation is trying to show, he replied “Yes – the software clearly shows
the mathematical (graphical) analysis of SHM.” [Appendix B 3]
In addition to the graphs, the variable readouts also display the displacement,
velocity, acceleration and force while running the simulation.
This means that objective 1 is achived.

5.1.2 Is the simulation a versatile solution which is easily understood and is within context of the A-Level
and GCSE physics courses?
The attributes in the simulation are limited to displacement, velocity, acceleration and force given as vectors and so
remains entirely within the A-Level course.
In addition, the system uses a constant force for g (the gravitational constant) and so simulations behave similarly to
what you would expect them too If they were in real life. Also, UnityEngine has damping inbuilt which means that
the amplitude of displacement of a pendulum decreases exponentially over a long period of time, which is also
similar to real life and is relevant to the A-Level physics course.
This means that objective 2 has been entirely achived.

5.1.3 Is the simulation easy for teachers to use and present to a class?
Mr Mumford was very enthusiastic about the program however he did mention outside of the written feedback that
he thought it would be useful to make which mode you’re currently in more clear. In the written feedback he also
mentioned that it would be great to enable students to perform calculations before the simulation is completed to
see if they can get the correct result. He also mentioned that “As a teacher I would mainly use this a simulation to be
used in lessons.” [Appendix B 4]
Below is a picture of the simulation running on the whiteboard of a physics laboratory, running on a windows 10
classroom-level computer.

80 Alex Bury

I would say that objective 3 has been almost entirely achived. With minor improvements such as a label to show
which mode you’re currently in, this objective could be entirely achived.

5.1.4 Is the user able to plot graphs relating to velocity, acceleration, force and displacement against
time?
Yes, although the graphs of velocity, acceleration and force do not follow the exact path they should when the
projectile is at high speed as picutred below. I believe this issue to be down to Unity’s inbuilt rigidbody system using
a rounded velocity which is not accurate enough to plot consistent points and this is used by my algorithm to
calculate acceleration using change in velocity per frame hence why the acceleration and force graphs are
undesirable at high speed. I could get around this by calculating the velocity of projectiles in my own algorithm which
would be designed to be able to calculate highly accurate velocities and in turn accelerations and forces.
Mr Mumford also expressed he found some trouble getting the velocity and acceleration graphs to begin plotting
consistently, however I have been unable to recreate this error. It may be that the corrective action taken place in
the testing has caused another issue to arise, so this is something I would look into further given the opportunity.
This means that objective 4 is partially achived.

81 Alex Bury

 Small Speed Large Speed

Displacement

Velocity

Acceleration

82 Alex Bury

Force

5.1.5 Does the program include a Simulation Builder which enables teachers to construct their own
simulations to be more relevent to their lessons, and the ability to save this as a scene to the local
machine?
The program has an EditMode which enables the placing, movement and destruction of structure elements and
projectiles. Additionally, these placable objects can be connected together through a system of nodes which can be
set as rigid joints, pivots, split joints or anchors. This is documented in testing section 1, The Simulation Builder. Also,
these can be saved as preset simulations, stored on the local machine and loaded at a later date. This is documented
in testing section 2, Saving And Loading.
When asked if the simulation builder was a useful tool to create custom simulations, Mr Mumford replied with: “As a
teacher I would mainly use this a simulation to be used in lessons. As an extension students could build there custom
simulation and predict the results e.g. displacement of the projectile.” [Appendix B 4]
This means that Objective 5 is fully achived.

5.2 Areas To Improve

Below is a list of things I would change/ fix immediately given the opportunity.

- Find the cause of Mr Mumford’s struggles to get velocity and acceleration graphs showing properly by
running the simulation with him and trying all possible combinations of events to attempt to recreate the
issue.

- Add a mode indicator to the top of the screen to show whether the user is currently in edit mode or
simulation mode.

- Populate the pre-made simulations into the app data persistant data path location at runtime so the user
does not have to do it manually.

Next, a list of things I would like to add or change in the long term if given the opportunity.

- Add the ability to give the students an opportunity to ‘fill in the blanks’ before the simulation completes, as
this is something Mr Mumford suggested would be desirable.

- Create documentation and a user guide for how to use the simulation as some people may find it tricky to
use without guidance.

- Add tips, descriptions and other visual aids to assist in the construction of a simulation as some people may
not be immediately aware of what to do.

- Add a ‘Student Mode’ for teachers to hand over control to their students and let them use the software. This
is based off feedback from Mr Mumford where he suggested that students may benefit from having hands-
on experience with a simulation.

83 Alex Bury

5.3 Conclusion

Overall, I would say that the program meets the requirements and objectives set out very well, with a
comprehensive simulation builder which allows teachers to create custom simulations which can be saved and
loaded for use in lessons. The simulation runs at over 30 frames per second on a windows 10 classroom computer
which means it’s not uncomfortable or nauseating to use and can be resolved from the back of a large physics
laboratory when displayed on a projector screen. In addition to this, the versatile graphing system allows for the
simultaneous display of two attributes of a projectile which is plotted in real time. With a few minor improvements,
as suggested in section 5.2, I believe this program could be a near-perfect solution.

84 Alex Bury

Appendix A

The following sources were used in section 1 Analysis.
University Of Colorado PhET Physics Simulations [Online] Available at:
https://phet.colorado.edu/en/simulations/category/physics [Date Accessed: 28/09/2018]

University Of Colorado PhET ‘The Ramp’ Simulation [Online] Available at:
https://phet.colorado.edu/en/simulation/legacy/the-ramp [Date Accessed: 28/09/2018]

Erik Neumann, myPhysicsLab [Online] available at: https://www.myphysicslab.com/ [Date Accessed: 01/10/2018]

Erik Neumann, myPhysicsLab Newton’s Cradle Simulation [Online] available at:
https://www.myphysicslab.com/engine2D/newtons-cradle-en.html [Date Accessed: 01/10/2018]

Simon Mumford, Head Of Physics, Clitheroe Royal Grammar School [Date Interveiwed: 04/10/18]

Multiple Contributers at Wikipedia.org, SUVAT and circular motion photo, [Online] available at:
https://en.wikipedia.org/wiki/Equations_of_motion [Date accessed: 11/10/18]

https://phet.colorado.edu/en/simulations/category/physics
https://phet.colorado.edu/en/simulation/legacy/the-ramp
https://www.myphysicslab.com/
https://www.myphysicslab.com/engine2D/newtons-cradle-en.html
https://en.wikipedia.org/wiki/Equations_of_motion

85 Alex Bury

Appendix B

The following responses are feedback from my end-user, Mr Mumford.

1 What are your favourite features of the program?
“Graphics are excellent, the user can clearly see what the simulation represents. Software quickly loads and it is easy
to select the different modes. Interface is easy to use.

Diplacement graph displays a good sine curve to allow students to view the mathematical link.

Projectile simulation is useful as an extension to the pendulum SHM theory. As a teacher I could use this as students
could predict the graph.”

2 What whould you like to change about the program?
“Is it possible to include different amount of damping?

A graph of vel-time dual display with displacement time.

A cursor to select vel, displacement values from the graph. Especially useful with the projectile simulation.”

3 Do you think that your students could understand what the simulation is trying to show?
“Yes – the software clearly shows the mathematical (graphical) analysis of SHM.”

4 Is the Simulation Builder a useful tool to create custom simulations?
“As a teacher I would mainly use this a simulation to be used in lessons. As an extension students could build there
custom simulation and predict the results e.g. displacement of the projectile.”

5 Does the simulation Builder impede on the simulation’s clarity and ease of use?
“Yes and No. I feel it could changed to a different ‘mode’ i.e. click for custom mode. As a teacher uses the software
they would only want to use the simulation.”

6 Overall, what would you rate the usefulness of the program on a scale of 1-10 (where 10 is perfect) and
why?
“It is clear you have a great effort on a challenge software project – well done. I give you a 8.”

Signature

